A086019 For p = prime(n), a(n) is the largest prime q such that pq is a base-2 pseudoprime; that is, 2^(pq-1) = 1 mod pq; a(n) is 0 if no such prime exists.
0, 0, 0, 31, 0, 257, 73, 683, 113, 331, 109, 61681, 5419, 2796203, 1613, 3033169, 1321, 599479, 122921, 38737, 22366891, 8831418697, 2931542417, 22253377, 268501, 131071, 28059810762433, 279073, 54410972897, 77158673929, 145295143558111
Offset: 2
Examples
a(9) = 683 because prime(9) = 23 and 683 is the largest factor of 2^22-1 that yields a pseudoprime when multiplied by 23.
References
- Paulo Ribenboim, The New Book of Prime Number Records, Springer, 1996, p. 105-112.
Links
- Amiram Eldar, Table of n, a(n) for n = 2..337
- Paul Erdős, On the converse of Fermat's theorem, Amer. Math. Monthly 56 (1949), p. 623-624.
- D. H. Lehmer, On the converse of Fermat's theorem, Amer. Math. Monthly 43 (1936), p. 347-354.
Programs
-
Mathematica
Table[p=Prime[n]; q=Reverse[Transpose[FactorInteger[2^(p-1)-1]][[1]]]; i=1; While[i<=Length[q]&&(PowerMod[2, p*q[[i]]-1, p*q[[i]]]>1), i++ ]; If[i>Length[q], 0, q[[i]]], {n, 2, 40}]
Comments