A086020 a(n) = Sum_(i=1..n) binomial(i+2,3)^2 [ Sequential sums of the tetragonal numbers or "tetras" (pyramidal, square) raised to power 2 (drawn from the 4th diagonal - left or right - of Pascal's Triangle) ].
1, 17, 117, 517, 1742, 4878, 11934, 26334, 53559, 101959, 183755, 316251, 523276, 836876, 1299276, 1965132, 2904093, 4203693, 5972593, 8344193, 11480634, 15577210, 20867210, 27627210, 36182835, 46915011, 60266727, 76750327
Offset: 1
Examples
a(8) = Sum_{i=1..8} binomial(i+2,3)^2 = (20*(8^7) + 210*(8^6) + 854*(8^5) + 1680*(8^4) + 1610*(8^3) + 630*(8^2) + 36*8)/7! = 26334.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988.
- John Engbers and Christopher Stocker, Two Combinatorial Proofs of Identities Involving Sums of Powers of Binomial Coefficients, Integers 16 (2016), #A58.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See pp. 13, 15.
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Crossrefs
Programs
-
Magma
[n*(n+1)*(n+2)*(n+3)*(2*n+3)*(5*n^2+15*n+1)/2520: n in [1..30]]; // G. C. Greubel, Nov 22 2017
-
Maple
a:=n->n*(n+1)*(n+2)*(n+3)*(2*n+3)*(5*n^2+15*n+1)/2520: seq(a(n),n=1..31); # Emeric Deutsch
-
Mathematica
Accumulate[Binomial[Range[30]+2,3]^2] (* Harvey P. Dale, Mar 24 2011 *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,17,117,517,1742,4878, 11934, 26334},30] (* Harvey P. Dale, Aug 17 2014 *)
-
PARI
a(n)=n*(n+1)*(n+2)*(n+3)*(2*n+3)*(5*n^2+15*n+1)/2520 \\ Charles R Greathouse IV, May 18 2015
Formula
a(n) = Sum_(i=1..n) binomial(i+2, 3)^2.
a(n) = ( C(n+3, 4)/35 )*( 35 + 84*C(n-1, 1) + 70*C(n-1, 2) + 20*C(n-1, 3) ).
a(n) = n*(n+1)*(n+2)*(n+3)*(2*n+3)(5*n^2 + 15*n + 1)/2520. - Emeric Deutsch, Aug 02 2005
O.g.f: x*(1+x)*(1 + 8*x + x^2)/(1-x)^8. - R. J. Mathar, Aug 19 2008
Comments