cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086020 a(n) = Sum_(i=1..n) binomial(i+2,3)^2 [ Sequential sums of the tetragonal numbers or "tetras" (pyramidal, square) raised to power 2 (drawn from the 4th diagonal - left or right - of Pascal's Triangle) ].

Original entry on oeis.org

1, 17, 117, 517, 1742, 4878, 11934, 26334, 53559, 101959, 183755, 316251, 523276, 836876, 1299276, 1965132, 2904093, 4203693, 5972593, 8344193, 11480634, 15577210, 20867210, 27627210, 36182835, 46915011, 60266727, 76750327
Offset: 1

Views

Author

André F. Labossière, Jul 17 2003

Keywords

Comments

Kekulé numbers for certain benzenoids (see the Cyvin-Gutman reference, p. 243; expression in (13.26) yields same sequence with offset 0). - Emeric Deutsch, Aug 02 2005
Partial sums of A001249. - R. J. Mathar, Aug 19 2008

Examples

			a(8) = Sum_{i=1..8} binomial(i+2,3)^2 = (20*(8^7) + 210*(8^6) + 854*(8^5) + 1680*(8^4) + 1610*(8^3) + 630*(8^2) + 36*8)/7! = 26334.
		

Crossrefs

Programs

  • Magma
    [n*(n+1)*(n+2)*(n+3)*(2*n+3)*(5*n^2+15*n+1)/2520: n in [1..30]]; // G. C. Greubel, Nov 22 2017
  • Maple
    a:=n->n*(n+1)*(n+2)*(n+3)*(2*n+3)*(5*n^2+15*n+1)/2520: seq(a(n),n=1..31); # Emeric Deutsch
  • Mathematica
    Accumulate[Binomial[Range[30]+2,3]^2]  (* Harvey P. Dale, Mar 24 2011 *)
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,17,117,517,1742,4878, 11934, 26334},30] (* Harvey P. Dale, Aug 17 2014 *)
  • PARI
    a(n)=n*(n+1)*(n+2)*(n+3)*(2*n+3)*(5*n^2+15*n+1)/2520 \\ Charles R Greathouse IV, May 18 2015
    

Formula

a(n) = Sum_(i=1..n) binomial(i+2, 3)^2.
a(n) = ( C(n+3, 4)/35 )*( 35 + 84*C(n-1, 1) + 70*C(n-1, 2) + 20*C(n-1, 3) ).
a(n) = n*(n+1)*(n+2)*(n+3)*(2*n+3)(5*n^2 + 15*n + 1)/2520. - Emeric Deutsch, Aug 02 2005
O.g.f: x*(1+x)*(1 + 8*x + x^2)/(1-x)^8. - R. J. Mathar, Aug 19 2008