cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086025 a(n) = Sum_{i=1..n} C(i+4,5)^2.

Original entry on oeis.org

1, 37, 478, 3614, 19490, 82994, 296438, 923702, 2580071, 6588075, 15606084, 34685508, 72976852, 146387476, 281597860, 521971876, 936053677, 1629533233, 2761788434, 4568378450, 7391175350, 11718183750, 18235516650, 27894475050, 41997225075, 62305185111
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n*(2*n+5)*(n+5)*(n+4)*(n+3)*(n+2)*(n+1)*(63*n^4 +630*n^3 +1855*n^2 +1400*n +12)/19958400: n in [1..30]]; // G. C. Greubel, Nov 22 2017
  • Mathematica
    Table[n*(2*n+5)*(n+5)*(n+4)*(n+3)*(n+2)*(n+1)*(63*n^4 +630*n^3 +1855*n^2 +1400*n +12)/19958400, {n,1,30}] (* G. C. Greubel, Nov 22 2017 *)
    LinearRecurrence[{12,-66,220,-495,792,-924,792,-495,220,-66,12,-1},{1,37,478,3614,19490,82994,296438,923702,2580071,6588075,15606084,34685508},30] (* Harvey P. Dale, Dec 22 2024 *)
  • PARI
    for(n=1,30, print1(sum(i=1,n, binomial(i+4,5)^2), ", ")) \\ G. C. Greubel, Nov 22 2017
    

Formula

From R. J. Mathar, Jun 16 2010: (Start)
G.f.: x*(1+x)*(x^4+24*x^3+76*x^2+24*x+1)/(x-1)^12.
a(n) = n*(2*n+5)*(n+5)*(n+4)*(n+3)*(n+2)*(n+1)*(63*n^4 +630*n^3 +1855*n^2 +1400*n +12) / 19958400. (End)

Extensions

More terms from R. J. Mathar, Jun 16 2010