A086114 Number of 4 X n (0,1) matrices such that each row and each column is nondecreasing or nonincreasing.
8, 64, 216, 528, 1080, 1968, 3304, 5216, 7848, 11360, 15928, 21744, 29016, 37968, 48840, 61888, 77384, 95616, 116888, 141520, 169848, 202224, 239016, 280608, 327400, 379808, 438264, 503216, 575128, 654480, 741768, 837504, 942216, 1056448
Offset: 1
Links
- Don Coppersmith, Ponder This: IBM Research Monthly Puzzles, March 2004 challenge
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Formula
a(n) = (2/3)*n*(n^3+6*n^2+11*n-6). More generally, number of m X n (0, 1) matrices such that each row and each column is increasing or decreasing is 2*n*(2*binomial(n+m-1, n)-m) = 4/Beta(m, n)-2*m*n.
G.f.: -8*x*(x^3-3*x^2+3*x+1) / (x-1)^5. [Colin Barker, Feb 22 2013]