cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A086113 Number of 3 X n (0,1) matrices such that each row and each column is nondecreasing or nonincreasing.

Original entry on oeis.org

6, 36, 102, 216, 390, 636, 966, 1392, 1926, 2580, 3366, 4296, 5382, 6636, 8070, 9696, 11526, 13572, 15846, 18360, 21126, 24156, 27462, 31056, 34950, 39156, 43686, 48552, 53766, 59340, 65286, 71616, 78342, 85476, 93030, 101016, 109446, 118332
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[6, 36, 102, 216]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 24 2012
  • Mathematica
    CoefficientList[Series[6*(1+2x-x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 24 2012 *)

Formula

a(n) = 2*n*(n^2 + 3*n - 1) = 2*n*A014209(n). More generally, number of m X n (0, 1) matrices such that each row and each column is increasing or decreasing is 2*n*(2*binomial(n+m-1, n)-m) = 2*m*(2*binomial(m+n-1, m)-n).
G.f.: 6*x*(1 + 2*x - x^2)/(1-x)^4. - Vincenzo Librandi, Jun 24 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 24 2012

A202052 T(n,k)=Number of (n+2)X(k+2) binary arrays avoiding patterns 001 and 110 in rows and columns.

Original entry on oeis.org

102, 216, 216, 390, 528, 390, 636, 1080, 1080, 636, 966, 1968, 2470, 1968, 966, 1392, 3304, 4980, 4980, 3304, 1392, 1926, 5216, 9170, 11016, 9170, 5216, 1926, 2580, 7848, 15760, 22092, 22092, 15760, 7848, 2580, 3366, 11360, 25650, 41088, 47950, 41088
Offset: 1

Views

Author

R. H. Hardin Dec 10 2011

Keywords

Comments

Table starts
..102...216...390....636....966....1392....1926.....2580.....3366.....4296
..216...528..1080...1968...3304....5216....7848....11360....15928....21744
..390..1080..2470...4980...9170...15760...25650....39940....59950....87240
..636..1968..4980..11016..22092...41088...71964...120000...192060...296880
..966..3304..9170..22092..47950...95984..180054...320180...544390...890904
.1392..5216.15760..41088..95984..205792..411696...777760..1400080..2418432
.1926..7848.25650..71964.180054..411696..874998..1750140..3325410..6046344
.2580.11360.39940.120000.320180..777760.1750140..3694920..7390020.14108400
.3366.15928.59950.192060.544390.1400080.3325410..7390020.15519262.31038744
.4296.21744.87240.296880.890904.2418432.6046344.14108400.31038744.64899456

Examples

			Some solutions for n=5 k=3
..0..0..0..0..0....1..0..1..1..1....0..1..0..1..1....0..1..0..1..1
..1..1..1..1..1....0..1..0..0..0....1..0..1..0..0....1..0..0..0..0
..0..0..0..0..0....1..0..1..1..1....0..1..0..1..0....0..1..0..1..1
..0..1..1..1..1....0..0..0..0..0....0..0..0..0..0....1..0..0..0..0
..0..1..0..0..0....1..0..1..1..1....0..1..0..1..0....0..1..0..1..1
..0..1..0..1..1....0..0..0..0..0....0..1..0..1..0....0..0..0..0..0
..0..1..0..1..0....1..0..1..0..0....0..1..0..1..0....0..1..0..1..0
		

Crossrefs

Column 1 is A086113(n+2)
Column 2 is A086114(n+2)
Column 3 is A086115(n+2)
Diagonal is A032260(n+2)

Formula

Empirical (via A086113): T(n,k)=2*(n+2)*(2*binomial(n+k+3,n+2)-k-2)
Empirical for columns:
T(n,1) = 2*n^3 + 18*n^2 + 46*n + 36
T(n,2) = (2/3)*n^4 + (28/3)*n^3 + (142/3)*n^2 + (284/3)*n + 64
T(n,3) = (1/6)*n^5 + (10/3)*n^4 + (155/6)*n^3 + (290/3)*n^2 + 164*n + 100
T(n,4) = (1/30)*n^6 + (9/10)*n^5 + (59/6)*n^4 + (111/2)*n^3 + (2552/15)*n^2 + (1278/5)*n + 144
T(n,5) = (1/180)*n^7 + (7/36)*n^6 + (511/180)*n^5 + (805/36)*n^4 + (4606/45)*n^3 + (2443/9)*n^2 + (1854/5)*n + 196
T(n,6) = (1/1260)*n^8 + (11/315)*n^7 + (59/90)*n^6 + (308/45)*n^5 + (7807/180)*n^4 + (7667/45)*n^3 + (14139/35)*n^2 + (17876/35)*n + 256
T(n,7) = (1/10080)*n^9 + (3/560)*n^8 + (211/1680)*n^7 + (67/40)*n^6 + (6709/480)*n^5 + (6041/80)*n^4 + (663941/2520)*n^3 + (79913/140)*n^2 + (4735/7)*n + 324

A086115 Number of 5 X n (0,1) matrices such that each row and each column is nondecreasing or nonincreasing.

Original entry on oeis.org

10, 100, 390, 1080, 2470, 4980, 9170, 15760, 25650, 39940, 59950, 87240, 123630, 171220, 232410, 309920, 406810, 526500, 672790, 849880, 1062390, 1315380, 1614370, 1965360, 2374850, 2849860, 3397950, 4027240, 4746430, 5564820
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

a(n) = (1/6)*n*(n^4+10*n^3+35*n^2+50*n-36). More generally, number of m X n (0, 1) matrices such that each row and each column is increasing or decreasing is 2*n*(2*binomial(n+m-1, n)-m) = 4/Beta(m, n)-2*m*n.
G.f.: -10*x*(x^4-4*x^3+6*x^2-4*x-1) / (x-1)^6. [Colin Barker, Feb 22 2013]
Showing 1-3 of 3 results.