A086231 Decimal expansion of value of Watson's integral.
1, 5, 1, 6, 3, 8, 6, 0, 5, 9, 1, 5, 1, 9, 7, 8, 0, 1, 8, 1, 5, 6, 0, 1, 2, 1, 5, 9, 6, 8, 1, 4, 2, 0, 7, 7, 9, 9, 5, 5, 3, 8, 7, 0, 4, 4, 4, 5, 2, 2, 6, 2, 6, 7, 6, 5, 6, 6, 9, 8, 0, 4, 6, 3, 6, 5, 8, 0, 8, 6, 3, 2, 0, 3, 5, 3, 5, 2, 1, 4, 5, 0, 4, 0, 1, 6, 1, 1, 7, 4, 1, 2, 0, 9, 6, 8, 8, 1, 1, 3, 9, 2
Offset: 1
Examples
1.51638605915197801815601215968142077995538704445226267656698...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.9, p. 322.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Steven R. Finch, Errata and Addenda to Mathematical Constants, p. 40.
- M. Lawrence Glasser and I. John Zucker, Extended Watson integrals for the cubic lattices, Proceedings of the National Academy of Sciences, Vol. 74, No. 5 (1977), pp. 1800-1801, alternative link.
- Anthony J. Guttmann, Lattice Green's functions in all dimensions, J. Phys. A.: Math. Theor., Vol. 43, No. 30 (2010) 305205.
- George N. Watson, Three triple integrals, The Quarterly Journal of Mathematics, Vol. os-10, No. 1 (1939), pp. 266-276.
- Eric Weisstein's World of Mathematics, Pólya's Random Walk Constants.
Programs
-
Magma
C := ComplexField(); (Sqrt(3)-1)*(Gamma(1/24)*Gamma(11/24))^2/(32*Pi(C)^3); // G. C. Greubel, Jan 07 2018
-
Maple
evalf((sqrt(3)-1)*(GAMMA(1/24)*GAMMA(11/24))^2 / (32*Pi^3),120); # Vaclav Kotesovec, Sep 16 2014
-
Mathematica
RealDigits[ N[ Sqrt[6]/32/Pi^3*Gamma[1/24]*Gamma[5/24]*Gamma[7/24]*Gamma[11/24], 102]][[1]] (* Jean-François Alcover, Nov 12 2012, after Eric W. Weisstein *)
-
PARI
(sqrt(3)-1)*(gamma(1/24)*gamma(11/24))^2 / (32*Pi^3) \\ Altug Alkan, Apr 13 2016
Formula
Equals (sqrt(3)-1)*(gamma(1/24)*gamma(11/24))^2/(32*Pi^3). - G. C. Greubel, Jan 07 2018
Equals 1/(1 - A086230). - Amiram Eldar, Aug 28 2020
Equals Sum_{k>=0} A002896(k)/36^k. - Vaclav Kotesovec, Apr 23 2023