A086250 Smallest base-2 Fermat pseudoprime x that has ord(2,x) = n, or 0 if one does not exist.
0, 0, 0, 0, 0, 0, 0, 0, 0, 341, 2047, 0, 0, 5461, 4681, 4369, 0, 1387, 0, 13981, 42799, 15709, 8388607, 1105, 1082401, 22369621, 0, 645, 256999, 10261, 0, 16843009, 1227133513, 5726623061, 8727391, 1729, 137438953471, 91625968981, 647089, 561
Offset: 1
Examples
a(10) = 1 there is only 1 pseudoprime, 341 = 11*31, having order 10; that is, 2^10 = 1 mod 341.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..200
- R. G. E. Pinch, Pseudoprimes and their factors (FTP)
- Eric Weisstein's World of Mathematics, Pseudoprime
Programs
-
Mathematica
Table[d=Divisors[2^n-1]; num=0; i=1; done=False; While[m=d[[i]]; done=!PrimeQ[m]&&PowerMod[2, m, m]==2&&MultiplicativeOrder[2, m]==n; If[done, num=m]; !done&&i
-
PARI
{ a(n) = fordiv(2^n-1,d, if(d>1 && (d-1)%n==0 && !ispseudoprime(d) && znorder(Mod(2,d))==n,return(d)) ); 0 } /* Max Alekseyev, Jan 07 2015 */
Comments