cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086250 Smallest base-2 Fermat pseudoprime x that has ord(2,x) = n, or 0 if one does not exist.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 341, 2047, 0, 0, 5461, 4681, 4369, 0, 1387, 0, 13981, 42799, 15709, 8388607, 1105, 1082401, 22369621, 0, 645, 256999, 10261, 0, 16843009, 1227133513, 5726623061, 8727391, 1729, 137438953471, 91625968981, 647089, 561
Offset: 1

Views

Author

T. D. Noe, Jul 14 2003

Keywords

Comments

A base-2 Fermat pseudoprime is a composite number x such that 2^x == 2 (mod x). For such an x, ord(2,x) is the smallest positive integer m such that 2^m == 1 (mod x). For a number x to have order n, it must be a factor of 2^n-1 and not be a factor of 2^r-1 for rA086249 lists the number of pseudoprimes of order n.

Examples

			a(10) = 1 there is only 1 pseudoprime, 341 = 11*31, having order 10; that is, 2^10 = 1 mod 341.
		

Crossrefs

Cf. A001567 (base-2 pseudoprimes), A086249.

Programs

  • Mathematica
    Table[d=Divisors[2^n-1]; num=0; i=1; done=False; While[m=d[[i]]; done=!PrimeQ[m]&&PowerMod[2, m, m]==2&&MultiplicativeOrder[2, m]==n; If[done, num=m]; !done&&i
    				
  • PARI
    { a(n) = fordiv(2^n-1,d, if(d>1 && (d-1)%n==0 && !ispseudoprime(d) && znorder(Mod(2,d))==n,return(d)) ); 0 } /* Max Alekseyev, Jan 07 2015 */