cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A086254 Decimal expansion of Feller's beta coin-tossing constant.

Original entry on oeis.org

1, 2, 3, 6, 8, 3, 9, 8, 4, 4, 6, 3, 8, 7, 8, 5, 1, 0, 1, 8, 9, 0, 6, 6, 0, 8, 7, 6, 1, 4, 2, 1, 2, 3, 2, 5, 2, 2, 1, 1, 1, 7, 6, 6, 2, 1, 2, 3, 5, 8, 8, 5, 8, 7, 3, 7, 1, 0, 7, 1, 6, 7, 2, 6, 7, 1, 5, 9, 0, 4, 2, 7, 4, 0, 0, 9, 2, 5, 8, 8, 1, 9, 1, 0, 7, 7, 8, 3, 8, 2, 6, 1, 3, 0, 6, 3, 9, 9, 3, 5, 7, 5, 9, 1
Offset: 1

Views

Author

Eric W. Weisstein, Jul 13 2003

Keywords

Examples

			1.2368398446387851018906608761421232....
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.11 Feller's coin tossing constants, p. 339.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (22 + (847 - 33*Sqrt(33))^(1/3) + (11*(77 + 3*Sqrt(33)))^(1/3))/33; // G. C. Greubel, Nov 25 2018
    
  • Maple
    evalf[120](solve(11*x^3-22*x^2+12*x-2=0,x)[1]); # Muniru A Asiru, Nov 25 2018
  • Mathematica
    alpha = Root[1-x+(x/2)^4, x, 1]; beta = (2-alpha)/(4-3*alpha); RealDigits[beta, 10, 102] // First (* Jean-François Alcover, Jun 03 2014 *)
  • PARI
    default(realprecision, 100); (22 + (847 - 33*sqrt(33))^(1/3) + (11*(77 + 3*sqrt(33)))^(1/3))/33 \\ G. C. Greubel, Nov 25 2018
    
  • Sage
    numerical_approx((22 + (847 - 33*sqrt(33))^(1/3) + (11*(77 + 3*sqrt(33)))^(1/3))/33, digits=100) # G. C. Greubel, Nov 25 2018

Formula

Equals (22 + (847 - 33*sqrt(33))^(1/3) + (11*(77 + 3*sqrt(33)))^(1/3))/33. - Vaclav Kotesovec, Oct 14 2018
Positive real root of 11*x^3 - 22*x^2 + 12*x - 2. - Peter Luschny, Oct 14 2018
Equals 2/(5 - A058265^2). - Jon Maiga, Nov 25 2018

A244293 Decimal expansion of 3/2 - gamma / log(2), a coin tossing constant related to the asymptotic evaluation of the expected length of the longest run of consecutive heads.

Original entry on oeis.org

6, 6, 7, 2, 5, 3, 8, 2, 2, 7, 2, 3, 1, 3, 2, 8, 4, 9, 3, 5, 3, 5, 8, 2, 4, 8, 0, 5, 9, 1, 8, 8, 4, 4, 6, 4, 8, 3, 7, 5, 6, 8, 4, 6, 8, 9, 7, 3, 6, 7, 1, 8, 9, 8, 3, 6, 8, 5, 0, 1, 8, 0, 2, 4, 1, 5, 4, 1, 8, 6, 4, 8, 5, 5, 3, 9, 0, 4, 1, 5, 7, 7, 0, 9, 7, 9, 7, 3, 9, 9, 6, 5, 5, 5, 6, 9, 3, 6, 9, 5, 3, 2
Offset: 0

Views

Author

Jean-François Alcover, Jun 25 2014

Keywords

Examples

			0.66725382272313284935358248...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.11 Feller Coin Tossing Constants, p. 340.

Crossrefs

Cf. A086253, A086254, A143300 (gamma/log(2)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); 3/2 - EulerGamma(R)/Log(2); // G. C. Greubel, Oct 13 2018
  • Mathematica
    RealDigits[3/2 - EulerGamma/Log[2], 10, 102] // First
  • PARI
    default(realprecision, 100); 3/2 - Euler/log(2) \\ G. C. Greubel, Oct 13 2018
    

Formula

Expected length ~ log(n)/log(2) - (3/2-gamma/log(2)).
Showing 1-2 of 2 results.