A086254 Decimal expansion of Feller's beta coin-tossing constant.
1, 2, 3, 6, 8, 3, 9, 8, 4, 4, 6, 3, 8, 7, 8, 5, 1, 0, 1, 8, 9, 0, 6, 6, 0, 8, 7, 6, 1, 4, 2, 1, 2, 3, 2, 5, 2, 2, 1, 1, 1, 7, 6, 6, 2, 1, 2, 3, 5, 8, 8, 5, 8, 7, 3, 7, 1, 0, 7, 1, 6, 7, 2, 6, 7, 1, 5, 9, 0, 4, 2, 7, 4, 0, 0, 9, 2, 5, 8, 8, 1, 9, 1, 0, 7, 7, 8, 3, 8, 2, 6, 1, 3, 0, 6, 3, 9, 9, 3, 5, 7, 5, 9, 1
Offset: 1
Examples
1.2368398446387851018906608761421232....
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.11 Feller's coin tossing constants, p. 339.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Run.
- Wikipedia, Feller's coin-tossing constants.
Programs
-
Magma
SetDefaultRealField(RealField(100)); (22 + (847 - 33*Sqrt(33))^(1/3) + (11*(77 + 3*Sqrt(33)))^(1/3))/33; // G. C. Greubel, Nov 25 2018
-
Maple
evalf[120](solve(11*x^3-22*x^2+12*x-2=0,x)[1]); # Muniru A Asiru, Nov 25 2018
-
Mathematica
alpha = Root[1-x+(x/2)^4, x, 1]; beta = (2-alpha)/(4-3*alpha); RealDigits[beta, 10, 102] // First (* Jean-François Alcover, Jun 03 2014 *)
-
PARI
default(realprecision, 100); (22 + (847 - 33*sqrt(33))^(1/3) + (11*(77 + 3*sqrt(33)))^(1/3))/33 \\ G. C. Greubel, Nov 25 2018
-
Sage
numerical_approx((22 + (847 - 33*sqrt(33))^(1/3) + (11*(77 + 3*sqrt(33)))^(1/3))/33, digits=100) # G. C. Greubel, Nov 25 2018
Formula
Equals (22 + (847 - 33*sqrt(33))^(1/3) + (11*(77 + 3*sqrt(33)))^(1/3))/33. - Vaclav Kotesovec, Oct 14 2018
Positive real root of 11*x^3 - 22*x^2 + 12*x - 2. - Peter Luschny, Oct 14 2018