A086270 Rectangular array T(k,n) of polygonal numbers, by antidiagonals.
1, 3, 1, 6, 4, 1, 10, 9, 5, 1, 15, 16, 12, 6, 1, 21, 25, 22, 15, 7, 1, 28, 36, 35, 28, 18, 8, 1, 36, 49, 51, 45, 34, 21, 9, 1, 45, 64, 70, 66, 55, 40, 24, 10, 1, 55, 81, 92, 91, 81, 65, 46, 27, 11, 1, 66, 100, 117, 120, 112, 96, 75, 52, 30, 12, 1, 78, 121, 145, 153, 148, 133, 111
Offset: 1
Examples
First 6 rows: ========================================= n\k| 1 2 3 4 5 6 7 ---|------------------------------------- 1 | 1 3 6 10 15 21 28 ... (A000217, triangular numbers) 2 | 1 4 9 16 25 36 49 ... (A000290, squares) 3 | 1 5 12 22 35 51 70 ... (A000326, pentagonal numbers) 4 | 1 6 15 28 45 66 91 ... (A000384, hexagonal numbers) 5 | 1 7 18 34 55 81 112 ... (A000566, heptagonal numbers) 6 | 1 8 21 40 65 96 133 ... (A000567, octagonal numbers) ... The array formed by the complements: A183225.
References
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 76 at p. 189.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 123.
Links
- Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
- Wikipedia, Polygonal number: Table of values.
Crossrefs
Programs
-
Magma
T:=func
; [T(k,n-k+1): k in [1..n], n in [1..12]]; // Bruno Berselli, Dec 19 2014 -
Mathematica
t[n_, k_] := n*Binomial[k, 2] + k; Table[ t[k, n - k + 1], {n, 12}, {k, n}] // Flatten
Formula
T(n, k) = n*binomial(k, 2) + k = A057145(n+2,k).
2*T(n, k) = T(n+r, k) + T(n-r, k), where r = 0, 1, 2, 3, ..., n-1 (see table in Example field). - Bruno Berselli, Dec 19 2014
From Stefano Spezia, Sep 02 2022: (Start)
G.f.: x*y*(1 - x + x*y)/((1 - x)^2*(1 - y)^3).
G.f. of k-th column: k*(1 + k - 2*x)*x/(2*(1 - x)^2). (End)
Extensions
Extended by Clark Kimberling, Jan 01 2011
Comments