A086271 Rectangular array T(n,k) of polygonal numbers, by descending antidiagonals.
1, 1, 3, 1, 4, 6, 1, 5, 9, 10, 1, 6, 12, 16, 15, 1, 7, 15, 22, 25, 21, 1, 8, 18, 28, 35, 36, 28, 1, 9, 21, 34, 45, 51, 49, 36, 1, 10, 24, 40, 55, 66, 70, 64, 45, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 1, 12, 30, 52, 75, 96, 112, 120, 117, 100, 66, 1, 13, 33, 58, 85, 111, 133, 148, 153, 145, 121, 78
Offset: 1
Examples
Columns 1,2,3 are the triangular, square and pentagonal numbers. Northwest corner: k=1 k=2 k=3 k=4 k=5 n=1: 1 1 1 1 1 ... n=2: 3 4 5 6 7 ... n=3: 6 9 12 15 18 ... n=4: 10 16 22 28 34 ... n=5: 15 25 35 45 55 ... ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 diagonals, flattened
- Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
Programs
-
Mathematica
T[n_, k_] := PolygonalNumber[k+2, n]; Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 04 2016 *)
Formula
T(n, k) = k*C(n,2) + n.
From Stefano Spezia, Sep 02 2022: (Start)
G.f.: x*y*(1 - y + x*y)/((1 - x)^3*(1 - y)^2).
G.f. of n-th row: n*(1 + n - 2*y)*y/(2*(1 - y)^2). (End)
Comments