cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086275 Number of distinct Gaussian primes in the factorization of n.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 2, 2, 2, 3, 1, 2, 2, 1, 3, 2, 2, 1, 2, 2, 3, 1, 2, 2, 4, 1, 1, 2, 3, 3, 2, 2, 2, 3, 3, 2, 3, 1, 2, 3, 2, 1, 2, 1, 3, 3, 3, 2, 2, 3, 2, 2, 3, 1, 4, 2, 2, 2, 1, 4, 3, 1, 3, 2, 4, 1, 2, 2, 3, 3, 2, 2, 4, 1, 3, 1, 3, 1, 3, 4, 2, 3, 2, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3
Offset: 1

Views

Author

T. D. Noe, Jul 14 2003

Keywords

Comments

As shown in the formula, a(n) depends on the number of distinct primes of the forms 4*k+1 (A005089) and 4*k-1 (A005091) and whether n is divisible by 2 (A059841).
Note that associated divisors are counted only once. - Jianing Song, Aug 30 2018

Examples

			a(1006655265000) = a(2^3*3^2*5^4*7^5*11^3) = 1 + 2*1 + 3 = 6 because n is divisible by 2, has 1 prime factor of the form 4*k+1 and 3 primes of the form 4*k+3. Over the Gaussian integers, 1006655265000 is factored as i*(1 + i)^6*(2 + i)^4*(2 - i)^4*3^2*7^5*11^3, the 6 distinct Gaussian factors are 1 + i, 2 + i, 2 - i, 3, 7 and 11.
		

Crossrefs

Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), A079458 ("phi", A000010), A227334 ("psi", A002322), this sequence ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319443.

Programs

  • Mathematica
    Join[{0}, Table[f=FactorInteger[n, GaussianIntegers->True]; cnt=Length[f]; If[MemberQ[{-1, I, -I}, f[[1, 1]]], cnt-- ]; cnt, {n, 2, 100}]]
    a[n_]:=If[n==2,1,PrimeNu[n, GaussianIntegers -> True]]; Array[a,100] (* Stefano Spezia, Sep 29 2024 *)
  • PARI
    a(n)=my(f=factor(n)[,1]); sum(i=1,#f,if(f[i]%4==1,2,1)) \\ Charles R Greathouse IV, Sep 14 2015

Formula

a(n) = A059841(n) + 2*A005089(n) + A005091(n).
Additive with a(p^e) = 2 if p = 1 (mod 4), 1 otherwise. - Franklin T. Adams-Watters, Oct 18 2006