A086275 Number of distinct Gaussian primes in the factorization of n.
0, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 2, 2, 2, 3, 1, 2, 2, 1, 3, 2, 2, 1, 2, 2, 3, 1, 2, 2, 4, 1, 1, 2, 3, 3, 2, 2, 2, 3, 3, 2, 3, 1, 2, 3, 2, 1, 2, 1, 3, 3, 3, 2, 2, 3, 2, 2, 3, 1, 4, 2, 2, 2, 1, 4, 3, 1, 3, 2, 4, 1, 2, 2, 3, 3, 2, 2, 4, 1, 3, 1, 3, 1, 3, 4, 2, 3, 2, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3
Offset: 1
Examples
a(1006655265000) = a(2^3*3^2*5^4*7^5*11^3) = 1 + 2*1 + 3 = 6 because n is divisible by 2, has 1 prime factor of the form 4*k+1 and 3 primes of the form 4*k+3. Over the Gaussian integers, 1006655265000 is factored as i*(1 + i)^6*(2 + i)^4*(2 - i)^4*3^2*7^5*11^3, the 6 distinct Gaussian factors are 1 + i, 2 + i, 2 - i, 3, 7 and 11.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Gaussian Prime.
Crossrefs
Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), A079458 ("phi", A000010), A227334 ("psi", A002322), this sequence ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319443.
Programs
-
Mathematica
Join[{0}, Table[f=FactorInteger[n, GaussianIntegers->True]; cnt=Length[f]; If[MemberQ[{-1, I, -I}, f[[1, 1]]], cnt-- ]; cnt, {n, 2, 100}]] a[n_]:=If[n==2,1,PrimeNu[n, GaussianIntegers -> True]]; Array[a,100] (* Stefano Spezia, Sep 29 2024 *)
-
PARI
a(n)=my(f=factor(n)[,1]); sum(i=1,#f,if(f[i]%4==1,2,1)) \\ Charles R Greathouse IV, Sep 14 2015
Formula
Additive with a(p^e) = 2 if p = 1 (mod 4), 1 otherwise. - Franklin T. Adams-Watters, Oct 18 2006
Comments