cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086302 a(n) = 4*n^4 + 24*n^3 + 48*n^2 + 36*n + 8.

Original entry on oeis.org

8, 120, 528, 1520, 3480, 6888, 12320, 20448, 32040, 47960, 69168, 96720, 131768, 175560, 229440, 294848, 373320, 466488, 576080, 703920, 851928, 1022120, 1216608, 1437600, 1687400, 1968408, 2283120, 2634128, 3024120, 3455880, 3932288, 4456320, 5031048
Offset: 0

Views

Author

Neven Juric (neven.juric(AT)apis-it.hr), Aug 29 2003

Keywords

Comments

Suppose one wishes to find sets of four positive integers (a,b,c,d) such that ab+1, ac+1, ad+1, bc+1, bd+1, cd+1 are perfect squares. Then one may take a = 1, b = x^2 + 2x, c = x^2 + 4x + 3, d = 4x^4 + 24x^3 + 48x^2 + 36x + 8.

Examples

			(a,b,c,d) = (1,3,8,120), (1,8,15,528), (1,15,24,1520), (1,24,35,3480), ...
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5, -10, 10, -5, 1}, {8, 120, 528, 1520, 3480}, 50] (* or *)
    A086302[n_] := 4 (n + 1) (n + 2) (n^2 + 3 n + 1);
    Array[A086302, 50, 0] (* Paolo Xausa, Jan 16 2024 *)

Formula

a(n) = A057769(n+1) + 1. - N. J. A. Sloane, Jun 12 2004
G.f.: 8*(1 + 10*x + x^2)/(1 - x)^5. - Colin Barker, Mar 26 2012
a(n) = 4 * (n+1) * (n+2) * (n^2 + 3*n + 1). - Bruno Berselli, Mar 26 2012
a(n) = 8*A062392(n+1). - Bruce J. Nicholson, Jun 05 2017
Sum_{n>=0} 1/a(n) = tan(sqrt(5)*Pi/2)*Pi/(4*sqrt(5)). - Amiram Eldar, Jan 22 2024
E.g.f.: 4*exp(x)*(2 + 28*x + 37*x^2 + 12*x^3 + x^4). - Stefano Spezia, Apr 27 2025