A086308 Decimal expansion of Otter's asymptotic constant beta for the number of unrooted trees.
5, 3, 4, 9, 4, 9, 6, 0, 6, 1, 4, 2, 3, 0, 7, 0, 1, 4, 5, 5, 0, 3, 7, 9, 7, 1, 1, 0, 5, 2, 0, 6, 8, 3, 9, 8, 1, 4, 3, 1, 1, 6, 5, 1, 4, 0, 5, 6, 9, 9, 0, 0, 9, 3, 9, 7, 7, 0, 7, 6, 8, 1, 0, 2, 3, 7, 5, 2, 3, 2, 1, 7, 8, 8, 0, 6, 4, 0, 6, 7, 2, 3, 9, 7, 8, 3, 2, 6, 2, 2, 4, 1, 8, 5, 9, 1, 1, 0, 4, 4, 4, 6, 6, 9, 3, 7
Offset: 0
Examples
0.53494960614230701455037971105206839814311651405699...
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6., p. 296.
Links
- Eric Weisstein's World of Mathematics, Tree
Programs
-
Mathematica
digits = 86; max = 250; s[n_, k_] := s[n, k] = a[n+1-k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; APrime[x_] := Sum[k*a[k]*x^(k-1), {k, 0, max}]; eq = Log[c] == 1 + Sum[A[c^-k]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; b = Sqrt[(1+Sum[APrime[alpha^-k]/alpha^k, {k, 2, max}])/(2*Pi)]; beta = 2*Pi*b^3; RealDigits[beta, 10, digits] // First (* Jean-François Alcover, Sep 24 2014 *)
Extensions
Corrected and extended by Vaclav Kotesovec, Jan 04 2013
More terms from Vaclav Kotesovec, Jun 20 2013 and Dec 26 2020
Comments