cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086308 Decimal expansion of Otter's asymptotic constant beta for the number of unrooted trees.

Original entry on oeis.org

5, 3, 4, 9, 4, 9, 6, 0, 6, 1, 4, 2, 3, 0, 7, 0, 1, 4, 5, 5, 0, 3, 7, 9, 7, 1, 1, 0, 5, 2, 0, 6, 8, 3, 9, 8, 1, 4, 3, 1, 1, 6, 5, 1, 4, 0, 5, 6, 9, 9, 0, 0, 9, 3, 9, 7, 7, 0, 7, 6, 8, 1, 0, 2, 3, 7, 5, 2, 3, 2, 1, 7, 8, 8, 0, 6, 4, 0, 6, 7, 2, 3, 9, 7, 8, 3, 2, 6, 2, 2, 4, 1, 8, 5, 9, 1, 1, 0, 4, 4, 4, 6, 6, 9, 3, 7
Offset: 0

Views

Author

Eric W. Weisstein, Jul 15 2003

Keywords

Comments

A000055(n) ~ 0.5349496061 * alpha^n * n^(-5/2), where alpha = 2.95576528565199497... (see A051491). - Vaclav Kotesovec, Jan 04 2013

Examples

			0.53494960614230701455037971105206839814311651405699...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6., p. 296.

Crossrefs

Programs

  • Mathematica
    digits = 86; max = 250; s[n_, k_] := s[n, k] = a[n+1-k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; APrime[x_] := Sum[k*a[k]*x^(k-1), {k, 0, max}]; eq = Log[c] == 1 + Sum[A[c^-k]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; b = Sqrt[(1+Sum[APrime[alpha^-k]/alpha^k, {k, 2, max}])/(2*Pi)]; beta = 2*Pi*b^3; RealDigits[beta, 10, digits] // First (* Jean-François Alcover, Sep 24 2014 *)

Extensions

Corrected and extended by Vaclav Kotesovec, Jan 04 2013
More terms from Vaclav Kotesovec, Jun 20 2013 and Dec 26 2020