cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086329 Triangle T(n,k) read by rows, given by [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 9, 11, 1, 0, 1, 16, 48, 26, 1, 0, 1, 25, 140, 202, 57, 1, 0, 1, 36, 325, 916, 747, 120, 1, 0, 1, 49, 651, 3045, 5071, 2559, 247, 1, 0, 1, 64, 1176, 8260, 23480, 25300, 8362, 502, 1, 0, 1, 81, 1968, 19404, 84456, 159736, 117962, 26520, 1013, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 30 2003, Jun 12 2007

Keywords

Comments

See A087903 for another version (transposed). - Philippe Deléham, Jun 13 2004

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,  1;
  0, 1,  4,    1;
  0, 1,  9,   11,    1;
  0, 1, 16,   48,   26,     1;
  0, 1, 25,  140,  202,    57,     1;
  0, 1, 36,  325,  916,   747,   120,    1;
  0, 1, 49,  651, 3045,  5071,  2559,  247,   1;
  0, 1, 64, 1176, 8260, 23480, 25300, 8362, 502, 1; ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[n==0, 1, StirlingS2[n, k] + Sum[(k-m-1)*T[n-j-1, k- m]*StirlingS2[j, m], {m,0,k-1}, {j,0,n-2}]];
    A086329[n_, k_]:= T[n,n-k+1];
    Table[A086329[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 21 2022 *)
  • SageMath
    @CachedFunction
    def T(n,k): # T=A087903
        if (n==0): return 1
        else: return stirling_number2(n, k) + sum( sum( (k-m-1)*T(n-j-1, k-m)*stirling_number2(j, m) for m in (0..k-1) ) for j in (0..n-2) )
    def A086329(n,k): return T(n, n-k+1)
    flatten([[A086329(n, k) for k in (0..n)] for n in (0..14)]) # G. C. Greubel, Jun 21 2022

Formula

Sum_{k=0..n} T(n, k) = A086211(n, 0).
T(n, 1) = 1, n > 0.
T(n, 2) = (n-1)^2, n > 0.
T(k+1, k) = 2^(k+1) - k - 2 = A000295(k+1).
Sum_{k=0..n} T(n, k) = A074664(n+1). - Philippe Deléham, Jun 13 2004
Sum_{k=0..n} T(n,k)*2^k = A171151(n). - Philippe Deléham, Dec 05 2009
T(n, k) = A087903(n, n-k+1). - G. C. Greubel, Jun 21 2022