A086329 Triangle T(n,k) read by rows, given by [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, ...] where DELTA is the operator defined in A084938.
1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 9, 11, 1, 0, 1, 16, 48, 26, 1, 0, 1, 25, 140, 202, 57, 1, 0, 1, 36, 325, 916, 747, 120, 1, 0, 1, 49, 651, 3045, 5071, 2559, 247, 1, 0, 1, 64, 1176, 8260, 23480, 25300, 8362, 502, 1, 0, 1, 81, 1968, 19404, 84456, 159736, 117962, 26520, 1013, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1, 1; 0, 1, 4, 1; 0, 1, 9, 11, 1; 0, 1, 16, 48, 26, 1; 0, 1, 25, 140, 202, 57, 1; 0, 1, 36, 325, 916, 747, 120, 1; 0, 1, 49, 651, 3045, 5071, 2559, 247, 1; 0, 1, 64, 1176, 8260, 23480, 25300, 8362, 502, 1; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[n==0, 1, StirlingS2[n, k] + Sum[(k-m-1)*T[n-j-1, k- m]*StirlingS2[j, m], {m,0,k-1}, {j,0,n-2}]]; A086329[n_, k_]:= T[n,n-k+1]; Table[A086329[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 21 2022 *)
-
SageMath
@CachedFunction def T(n,k): # T=A087903 if (n==0): return 1 else: return stirling_number2(n, k) + sum( sum( (k-m-1)*T(n-j-1, k-m)*stirling_number2(j, m) for m in (0..k-1) ) for j in (0..n-2) ) def A086329(n,k): return T(n, n-k+1) flatten([[A086329(n, k) for k in (0..n)] for n in (0..14)]) # G. C. Greubel, Jun 21 2022
Formula
Sum_{k=0..n} T(n, k) = A086211(n, 0).
T(n, 1) = 1, n > 0.
T(n, 2) = (n-1)^2, n > 0.
T(k+1, k) = 2^(k+1) - k - 2 = A000295(k+1).
Sum_{k=0..n} T(n, k) = A074664(n+1). - Philippe Deléham, Jun 13 2004
Sum_{k=0..n} T(n,k)*2^k = A171151(n). - Philippe Deléham, Dec 05 2009
T(n, k) = A087903(n, n-k+1). - G. C. Greubel, Jun 21 2022
Comments