cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A074664 Number of algebraically independent elements of degree n in the algebra of symmetric polynomials in noncommuting variables.

Original entry on oeis.org

1, 1, 2, 6, 22, 92, 426, 2146, 11624, 67146, 411142, 2656052, 18035178, 128318314, 954086192, 7396278762, 59659032142, 499778527628, 4341025729290, 39035256389026, 362878164902216, 3482882959111530, 34472032118214598
Offset: 1

Views

Author

Michael Somos, Aug 29 2002

Keywords

Comments

Also the number of irreducible set partitions of size n (see A055105) {1}; {1,2}; {1,2,3}, {1,23}; ...; and also the number of set partitions of n which do not have a proper subset of parts with a union equal to a subset {1,2,...,j} with j < n (atomic set partitions, see A087903) {1}; {12}; {13,2}, {123}; ...
Also the number of non-nesting permutations on n elements (see He et al.). - Chad Brewbaker, Apr 11 2010
The Chen-Li-Wang link presents a bijection from indecomposable (= atomic) partitions to irreducible partitions. - David Callan, May 13 2014
From David Callan, Jul 21 2017: (Start)
The "non-nesting" permutations in Definition 2.2 of the He et al. reference seem to be the permutations whose inverses avoid all four of the patterns 14-23, 23-14, 32-41, and 41-32 (no nested ascents or descents), counted by 1, 2, 6, 20, 68, 240, 848, 3048, ... .
a(n) is the number of permutations of [n-1] with no nested descents, that is, permutations of [n-1] that avoid both of the dashed patterns 32-41 and 41-32. For example, for p = 823751694, the descents 82 and 75 are nested, as are the descents 75 and 94, but 82 and 94 are not because neither of the intervals [2,8] and [4,9] is contained in the other. Since 82 and 75 are nested, 8275 is a 41-32 pattern in p. (End)

Examples

			G.f. = x + x^2 + 2*x^3 + 6*x^4 + 22*x^5 + 92*x^6 + 426*x^7 + 2146*x^8 + ...
m{1} = x1 + x2 + x3 + ..., so a(1) = 1.
m{1,2} = x1 x2 + x2 x1 + x2 x3 + x3 x2 + x1 x3 + ..., m{12} = x1 x1 + x2 x2 + x3 x3 + ... where m{1} m{1} = m{1,2} + m{12}, so a(2) = 2-1 = 1.
m{1,2,3} = x1 x2 x3 + x1 x2 x4 + x1 x3 x4 + ..., m{12,3} = x1 x1 x2 + x2 x2 x1 + ..., m{13,2} = x1 x2 x1 + x2 x1 x2 + ..., m{1,23} = x1 x2 x2 + x2 x1 x1 + ..., m{123} = x1 x1 x1 + x2 x2 x2 + ... and there are 3 independent relations among these 5 elements m{12} m{1} = m{123} + m{12,3}, m{1} m{12} = m{123} + m{1,23}, m{1} m{1,1} = m{1,2,3} + m{12,3} + m{13,2} so a(3) = 5-3 = 2.
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4, Section 7.2.1.7, Problem 26.

Crossrefs

Row sums of A055105, A055106, A055107. Cf. A098742, A003319.
Row sums of A087903, A055105, A055106, A055107.

Programs

  • Maple
    T := proc(n, k) option remember; local j;
        if k=n then 1
      elif k<0 then 0
      else k*T(n-1,k) + add(T(n-1,j), j=k-1..n-1)
        fi end:
    A074664 := n -> T(n, 0);
    seq(A074664(n), n=0..22); # Peter Luschny, May 13 2014
  • Mathematica
    nmax = 23; A087903[n_, k_] := A087903[n, k] = StirlingS2[n-1, k] + Sum[ (k-d-1)*A087903[n-j-1, k-d]*StirlingS2[j, d], {d, 0, k-1}, {j, 0, n-2}]; a[n_] := Sum[ A087903[n, k], {k, 1, n-1}]; a[1] = 1; Table[a[n], {n, 1, nmax}](* Jean-François Alcover, Oct 04 2011, after Philippe Deléham *)
    Clear[t, n, k, i, nn, x]; coeff = ConstantArray[1, 23]; mp[m_,e_] := If[e==0, IdentityMatrix@ Length@ m, MatrixPower[m, e]]; nn = Length[coeff]; cc = Range[nn]*0 + 1; Monitor[ Do[Clear[t]; t[n_, 1] := t[n, 1] = cc[[n]];
      t[n_, k_] := t[n, k] = If[n >= k,
         Sum[t[n - i, k - 1], {i, 1, 2 - 1}] +
          Sum[t[n - i, k], {i, 1, 2 - 1}], 0];
      A4 = Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}];
      A5 = A4[[1 ;; nn - 1]]; A5 = Prepend[A5, ConstantArray[0, nn]];
      cc = Total[
        Table[coeff[[n]]*mp[A5, n - 1][[All, 1]], {n, 1,
          nn}]];, {i, 1, nn}], i]; cc
    (* Mats Granvik, Jul 11 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 - 1 / serlaplace( exp( exp( x + x * O(x^n)) - 1)), n))};
    
  • PARI
    x='x+O('x^100); B=exp(exp(x) - 1); Vec( 1-1/serlaplace(B)) \\ Joerg Arndt, Aug 13 2015

Formula

G.f.: 1 - 1 / B(x) where B(x) = g.f. for A000110 the Bell numbers.
a(n) = Sum_{k=1..n-1} A087903(n,k). a(n+1) = Sum_{k=0..n} A086329(n,k). a(n+2) = Sum_{k=0..n} A086211(n,k). - Philippe Deléham, Jun 13 2004
G.f.: x / (1 - (x - x^2) / (1 - x - (x - 2*x^2) / (1 - 2*x - (x - 3*x^2) / ...))) (a continued fraction). - Michael Somos, Sep 22 2005
Hankel transform is A000142. - Philippe Deléham, Jun 21 2007
From Paul Barry, Nov 26 2009: (Start)
G.f.: (of 1,1,2,6,...) 1/(1-x-x^2/(1-3x-2x^2/(1-4x-3x^2/(1-5x-4x^2/(1-6x-5x^2/(1-... (continued fraction);
G.f.: (of 1,2,6,...) 1/(1-2x-2x^2/(1-3x-3x^2/(1-4x-4x^2/(1-5x-5x^2/(1-... (continued fraction). (End)
G.f.: 1/(1-x/(1-x/(1-2x/(1-x/(1-3x/(1-x/(1-4x/(1-x/(1-5x/(1-x/(1-... (continued fraction). - Paul Barry, Mar 03 2010
G.f. satisfies: A(x) = x/(1 - (1-x)*A( x/(1-x) )). - Paul D. Hanna, Aug 15 2010
a(n) = upper left term in M^(n-1), where M is the following infinite square production matrix:
1, 1, 0, 0, 0, 0, ...
1, 2, 1, 0, 0, 0, ...
1, 1, 3, 1, 0, 0, ...
1, 1, 1, 4, 1, 0, ...
1, 1, 1, 1, 5, 1, ...
1, 1, 1, 1, 1, 6, ...
...
a(n) = sum of top row terms in M^(n-2). Example: top row of M^4 = (22, 31, 28, 10, 1, 0, 0, 0, ...), where 22 = a(5) and (22 + 31 + 28 + 10 + 1) = 92 = a(6). - Gary W. Adamson, Jul 11 2011
From Sergei N. Gladkovskii, Sep 28 2012 to May 19 2013: (Start)
Continued fractions:
G.f.: (2+(x^2-4)/(U(0)-x^2+4))/x where U(k) = k*(2*k+3)*x^2 + x - 2 - (2 - x + 2*k*x)*(2 + 3*x + 2*k*x)*(k+1)*x^2/U(k+1).
G.f.: (1+U(0))/x where U(k) = +x*k - 1 + x - x^2*(k+1)/U(k+1).
G.f.: 1 + 1/x - U(0)/x where U(k) = 1 + x - x*(k+1)/(1 - x/U(k+1)).
G.f.: 1/U(0) where U(k) = 1 - x*(k+1)/(1 - x/U(k+1)).
G.f.: 1/x - ((1+x)/x)/G(0) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-1) - x*(2*k+1)*(2*k+3)*(2*x*k-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+x-1)/G(k+1))).
G.f.: (1 - G(0))/x where G(k) = 1 - x/(1 - x*(k + 1)/G(k+1)).
G.f.: 1/Q(0) where Q(k) = 1 + x/(x*k - 1)/Q(k+1).
G.f.: Q(0) where Q(k) = 1 + x/(1 - x + x*(k+1)/(x - 1/Q(k+1))). (End)

Extensions

Edited by Mike Zabrocki, Sep 03 2005

A087903 Triangle read by rows of the numbers T(n,k) (n > 1, 0 < k < n) of set partitions of n of length k which do not have a proper subset of parts with a union equal to a subset {1,2,...,j} with j < n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 9, 1, 1, 26, 48, 16, 1, 1, 57, 202, 140, 25, 1, 1, 120, 747, 916, 325, 36, 1, 1, 247, 2559, 5071, 3045, 651, 49, 1, 1, 502, 8362, 25300, 23480, 8260, 1176, 64, 1, 1, 1013, 26520, 117962, 159736, 84456, 19404, 1968, 81, 1, 1, 2036, 82509, 525608, 998830, 749154, 253764, 40944, 3105, 100, 1
Offset: 2

Views

Author

Mike Zabrocki, Oct 14 2003

Keywords

Comments

Another version of the triangle T(n,k), 0 <= k <= n, given by [1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, ...] DELTA [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is the operator defined in A084938; see also A086329 for a triangle transposed. - Philippe Deléham, Jun 13 2004

Examples

			T(2,1)=1 for {12};
T(3,1)=1, T(3,2) = 1 for {123}; {13|2};
T(4,1)=1, T(4,2)=4, T(4,3)=1 for {1234}; {14|23}, {13|24}, {124|3}, {134|2}; {14|2|3}.
From _Philippe Deléham_, Jul 16 2007: (Start)
Triangle begins:
  1;
  1,    1;
  1,    4,     1;
  1,   11,     9,      1;
  1,   26,    48,     16,      1;
  1,   57,   202,    140,     25,     1;
  1,  120,   747,    916,    325,    36,     1;
  1,  247,  2559,   5071,   3045,   651,    49,    1;
  1,  502,  8362,  25300,  23480,  8260,  1176,   64,  1;
  1, 1013, 26520, 117962, 159736, 84456, 19404, 1968, 81, 1;
  ...
Triangle T(n,k), 0 <= k <= n, given by [1,0,2,0,3,0,4,0,...] DELTA [0,1,0,1,0,1,0,...] begins:
  1;
  1,    0;
  1,    1,     0;
  1,    4,     1,      0;
  1,   11,     9,      1,      0;
  1,   26,    48,     16,      1,     0;
  1,   57,   202,    140,     25,     1,     0;
  1,  120,   747,    916,    325,    36,     1,    0;
  1,  247,  2559,   5071,   3045,   651,    49,    1,  0;
  1,  502,  8362,  25300,  23480,  8260,  1176,   64,  1, 0;
  1, 1013, 26520, 117962, 159736, 84456, 19404, 1968, 81, 1, 0;
  ...
(End)
		

Crossrefs

Programs

  • Maple
    A := proc(n,k) option remember; local j,ell; if n<=0 or k>=n then 0; elif k=1 or k=n-1 then 1; else S2(n-1,k)+add(add((k-ell-1)*A(n-j-1,k-ell)*S2(j,ell),ell=0..k-1),j=0..n-2); fi; end: S2 := (n,k)->if n<0 or k>n then 0; elif k=n or k=1 then 1 else k*S2(n-1,k)+S2(n-1,k-1); fi:
  • Mathematica
    nmax = 12; t[n_, k_] := t[n, k] = StirlingS2[n-1, k] + Sum[ (k-d-1)*t[n-j-1, k-d]*StirlingS2[j, d], {d, 0, k-1}, {j, 0, n-2}]; Flatten[ Table[ t[n, k], {n, 2, nmax}, {k, 1, n-1}]] (* Jean-François Alcover, Oct 04 2011, after given formula *)
  • SageMath
    @CachedFunction # T = A087903
    def T(n,k): return stirling_number2(n-1, k) + sum( sum( (k-m-1)*T(n-j-1, k-m)*stirling_number2(j, m) for m in (0..k-1) ) for j in (0..n-2) )
    flatten([[T(n, k) for k in (1..n-1)] for n in (2..14)]) # G. C. Greubel, Jun 21 2022

Formula

T(n, n-1) = T(n,1) = 1.
T(n, n-2) = (n-2)^2.
T(n, 2) = A000295(n).
T(n, k) = S2(n-1, k) + Sum_{j=0..n-2} Sum_{d=0..k-1} (k-d-1)*T(n-j-1, k-d)*S2(j, d), where S2(n, k) is the Stirling number of the second kind.
Sum_{k = 1..n-1} T(n, k) = A074664(n). - Philippe Deléham, Jun 13 2004
G.f.: 1-1/(1+add(add(q^n t^k S2(n, k), k=1..n), n >= 1)) where S2(n, k) are the Stirling numbers of the 2nd kind A008277. - Mike Zabrocki, Sep 03 2005

A171151 Expansion of (A(x)-1)/(x*A(x)), A(x) the g.f. of A004211.

Original entry on oeis.org

1, 2, 6, 26, 142, 898, 6342, 49114, 412046, 3711746, 35660166, 363484058, 3914162830, 44370673282, 527868672582, 6572992645978, 85461951576974, 1157778354181634, 16310949128381190, 238543136307926810
Offset: 0

Views

Author

Paul Barry, Dec 04 2009

Keywords

Comments

Hankel transform is A108400.

Formula

G.f.: 1/(1-2x/(1-x/(1-4x/(1-x/(1-6x/(1-x/(1-8x/(1-x/(1-... (continued function).
a(n) = Sum_{k=0..n} A086329(n,k)*2^k. - Philippe Deléham, Dec 05 2009
G.f.: 1/U(0) where U(k) = 1 - x - 2*x*k + x*(2*x*k + 2*x - 1)/U(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Sep 24 2012
G.f.: 1/x - 1/( x*G(0) - 1 ) where G(k) = 1 - (4*x*k-1)/(x - x^4/(x^3 - (4*x*k-1)*(4*x*k+2*x-1)*(4*x*k+4*x-1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 08 2013
G.f.: (1 - G(0))/x where G(k) = 1 - x/(1 - 2*x*(k + 1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 30 2013
G.f.: 1/x + 1 - (2*x+1)/(G(0) + 2*x+1), where G(k)= 2*x*k - x - 1 - 2*(k+1)*x^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 21 2013
G.f.: 1/x - Q(0)/x, where Q(k) = 1 - x*(2*k+1) - (2*k+2)*x^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 09 2013
Showing 1-3 of 3 results.