cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A047999 Sierpiński's [Sierpinski's] triangle (or gasket): triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 2.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Restored the alternative spelling of Sierpinski to facilitate searching for this triangle using regular-expression matching commands in ASCII. - N. J. A. Sloane, Jan 18 2016
Also triangle giving successive states of cellular automaton generated by "Rule 60" and "Rule 102". - Hans Havermann, May 26 2002
Also triangle formed by reading triangle of Eulerian numbers (A008292) mod 2. - Philippe Deléham, Oct 02 2003
Self-inverse when regarded as an infinite lower triangular matrix over GF(2).
Start with [1], repeatedly apply the map 0 -> [00/00], 1 -> [10/11] [Allouche and Berthe]
Also triangle formed by reading triangles A011117, A028338, A039757, A059438, A085881, A086646, A086872, A087903, A104219 mod 2. - Philippe Deléham, Jun 18 2005
J. H. Conway writes (in Math Forum): at least the first 31 rows give odd-sided constructible polygons (sides 1, 3, 5, 15, 17, ... see A001317). The 1's form a Sierpiński sieve. - M. Dauchez (mdzzdm(AT)yahoo.fr), Sep 19 2005
When regarded as an infinite lower triangular matrix, its inverse is a (-1,0,1)-matrix with zeros undisturbed and the nonzero entries in every column form the Prouhet-Thue-Morse sequence (1,-1,-1,1,-1,1,1,-1,...) A010060 (up to relabeling). - David Callan, Oct 27 2006
Triangle read by rows: antidiagonals of an array formed by successive iterates of running sums mod 2, beginning with (1, 1, 1, ...). - Gary W. Adamson, Jul 10 2008
T(n,k) = A057427(A143333(n,k)). - Reinhard Zumkeller, Oct 24 2010
The triangle sums, see A180662 for their definitions, link Sierpiński’s triangle A047999 with seven sequences, see the crossrefs. The Kn1y(n) and Kn2y(n), y >= 1, triangle sums lead to the Sierpiński-Stern triangle A191372. - Johannes W. Meijer, Jun 05 2011
Used to compute the total Steifel-Whitney cohomology class of the Real Projective space. This was an essential component of the proof that there are no product operations without zero divisors on R^n for n not equal to 1, 2, 4 or 8 (real numbers, complex numbers, quaternions, Cayley numbers), proved by Bott and Milnor. - Marcus Jaiclin, Feb 07 2012
T(n,k) = A134636(n,k) mod 2. - Reinhard Zumkeller, Nov 23 2012
T(n,k) = 1 - A219463(n,k), 0 <= k <= n. - Reinhard Zumkeller, Nov 30 2012
From Vladimir Shevelev, Dec 31 2013: (Start)
Also table of coefficients of polynomials s_n(x) of degree n which are defined by formula s_n(x) = Sum_{i=0..n} (binomial(n,i) mod 2)*x^k. These polynomials we naturally call Sierpiński's polynomials. They also are defined by the recursion: s_0(x)=1, s_(2*n+1)(x) = (x+1)*s_n(x^2), n>=0, and s_(2*n)(x) = s_n(x^2), n>=1.
Note that: s_n(1) = A001316(n),
s_n(2) = A001317(n),
s_n(3) = A100307(n),
s_n(4) = A001317(2*n),
s_n(5) = A100308(n),
s_n(6) = A100309(n),
s_n(7) = A100310(n),
s_n(8) = A100311(n),
s_n(9) = A100307(2*n),
s_n(10) = A006943(n),
s_n(16) = A001317(4*n),
s_n(25) = A100308(2*n), etc.
The equality s_n(10) = A006943(n) means that sequence A047999 is obtained from A006943 by the separation by commas of the digits of its terms. (End)
Comment from N. J. A. Sloane, Jan 18 2016: (Start)
Take a diamond-shaped region with edge length n from the top of the triangle, and rotate it by 45 degrees to get a square S_n. Here is S_6:
[1, 1, 1, 1, 1, 1]
[1, 0, 1, 0, 1, 0]
[1, 1, 0, 0, 1, 1]
[1, 0, 0, 0, 1, 0]
[1, 1, 1, 1, 0, 0]
[1, 0, 1, 0, 0, 0].
Then (i) S_n contains no square (parallel to the axes) with all four corners equal to 1 (cf. A227133); (ii) S_n can be constructed by using the greedy algorithm with the constraint that there is no square with that property; and (iii) S_n contains A064194(n) 1's. Thus A064194(n) is a lower bound on A227133(n). (End)
See A123098 for a multiplicative encoding of the rows, i.e., product of the primes selected by nonzero terms; e.g., 1 0 1 => 2^1 * 3^0 * 5^1. - M. F. Hasler, Sep 18 2016
From Valentin Bakoev, Jul 11 2020: (Start)
The Sierpinski's triangle with 2^n rows is a part of a lower triangular matrix M_n of dimension 2^n X 2^n. M_n is a block matrix defined recursively: M_1= [1, 0], [1, 1], and for n>1, M_n = [M_(n-1), O_(n-1)], [M_(n-1), M_(n-1)], where M_(n-1) is a block matrix of the same type, but of dimension 2^(n-1) X 2^(n-1), and O_(n-1) is the zero matrix of dimension 2^(n-1) X 2^(n-1). Here is how M_1, M_2 and M_3 look like:
1 0 1 0 0 0 1 0 0 0 0 0 0 0
1 1 1 1 0 0 1 1 0 0 0 0 0 0 - It is seen the self-similarity of the
1 0 1 0 1 0 1 0 0 0 0 0 matrices M_1, M_2, ..., M_n, ...,
1 1 1 1 1 1 1 1 0 0 0 0 analogously to the Sierpinski's fractal.
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1
M_n can also be defined as M_n = M_1 X M_(n-1) where X denotes the Kronecker product. M_n is an important matrix in coding theory, cryptography, Boolean algebra, monotone Boolean functions, etc. It is a transformation matrix used in computing the algebraic normal form of Boolean functions. Some properties and links concerning M_n can be seen in LINKS. (End)
Sierpinski's gasket has fractal (Hausdorff) dimension log(A000217(2))/log(2) = log(3)/log(2) = 1.58496... (and cf. A020857). This gasket is the first of a family of gaskets formed by taking the Pascal triangle (A007318) mod j, j >= 2 (see CROSSREFS). For prime j, the dimension of the gasket is log(A000217(j))/log(j) = log(j(j + 1)/2)/log(j) (see Reiter and Bondarenko references). - Richard L. Ollerton, Dec 14 2021

Examples

			Triangle begins:
              1,
             1,1,
            1,0,1,
           1,1,1,1,
          1,0,0,0,1,
         1,1,0,0,1,1,
        1,0,1,0,1,0,1,
       1,1,1,1,1,1,1,1,
      1,0,0,0,0,0,0,0,1,
     1,1,0,0,0,0,0,0,1,1,
    1,0,1,0,0,0,0,0,1,0,1,
   1,1,1,1,0,0,0,0,1,1,1,1,
  1,0,0,0,1,0,0,0,1,0,0,0,1,
  ...
		

References

  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
  • Brand, Neal; Das, Sajal; Jacob, Tom. The number of nonzero entries in recursively defined tables modulo primes. Proceedings of the Twenty-first Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1990). Congr. Numer. 78 (1990), 47--59. MR1140469 (92h:05004).
  • John W. Milnor and James D. Stasheff, Characteristic Classes, Princeton University Press, 1974, pp. 43-49 (sequence appears on p. 46).
  • H.-O. Peitgen, H. Juergens and D. Saupe: Chaos and Fractals (Springer-Verlag 1992), p. 408.
  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; Chapter 3.

Crossrefs

Sequences based on the triangles formed by reading Pascal's triangle mod m: (this sequence) (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930(m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Other versions: A090971, A038183.
From Johannes W. Meijer, Jun 05 2011: (Start)
A106344 is a skew version of this triangle.
Triangle sums (see the comments): A001316 (Row1; Related to Row2), A002487 (Related to Kn11, Kn12, Kn13, Kn21, Kn22, Kn23), A007306 (Kn3, Kn4), A060632 (Fi1, Fi2), A120562 (Ca1, Ca2), A112970 (Gi1, Gi2), A127830 (Ze3, Ze4). (End)

Programs

  • Haskell
    import Data.Bits (xor)
    a047999 :: Int -> Int -> Int
    a047999 n k = a047999_tabl !! n !! k
    a047999_row n = a047999_tabl !! n
    a047999_tabl = iterate (\row -> zipWith xor ([0] ++ row) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Dec 11 2011, Oct 24 2010
    
  • Magma
    A047999:= func< n,k | BitwiseAnd(n-k, k) eq 0 select 1 else 0 >;
    [A047999(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 03 2024
  • Maple
    # Maple code for first M rows (here M=10) - N. J. A. Sloane, Feb 03 2016
    ST:=[1,1,1]; a:=1; b:=2; M:=10;
    for n from 2 to M do ST:=[op(ST),1];
    for i from a to b-1 do ST:=[op(ST), (ST[i+1]+ST[i+2]) mod 2 ]; od:
    ST:=[op(ST),1];
    a:=a+n; b:=a+n; od:
    ST; # N. J. A. Sloane
    # alternative
    A047999 := proc(n,k)
        modp(binomial(n,k),2) ;
    end proc:
    seq(seq(A047999(n,k),k=0..n),n=0..12) ; # R. J. Mathar, May 06 2016
  • Mathematica
    Mod[ Flatten[ NestList[ Prepend[ #, 0] + Append[ #, 0] &, {1}, 13]], 2] (* Robert G. Wilson v, May 26 2004 *)
    rows = 14; ca = CellularAutomaton[60, {{1}, 0}, rows-1]; Flatten[ Table[ca[[k, 1 ;; k]], {k, 1, rows}]] (* Jean-François Alcover, May 24 2012 *)
    Mod[#,2]&/@Flatten[Table[Binomial[n,k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Jun 26 2019 *)
    A047999[n_,k_]:= Boole[BitAnd[n-k,k]==0];
    Table[A047999[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 03 2025 *)
  • PARI
    \\ Recurrence for Pascal's triangle mod p, here p = 2.
    p = 2; s=13; T=matrix(s,s); T[1,1]=1;
    for(n=2,s, T[n,1]=1; for(k=2,n, T[n,k] = (T[n-1,k-1] + T[n-1,k])%p ));
    for(n=1,s,for(k=1,n,print1(T[n,k],", "))) \\ Gerald McGarvey, Oct 10 2009
    
  • PARI
    A011371(n)=my(s);while(n>>=1,s+=n);s
    T(n,k)=A011371(n)==A011371(k)+A011371(n-k) \\ Charles R Greathouse IV, Aug 09 2013
    
  • PARI
    T(n,k)=bitand(n-k,k)==0 \\ Charles R Greathouse IV, Aug 11 2016
    
  • Python
    def A047999_T(n,k):
        return int(not ~n & k) # Chai Wah Wu, Feb 09 2016
    

Formula

Lucas's Theorem is that T(n,k) = 1 if and only if the 1's in the binary expansion of k are a subset of the 1's in the binary expansion of n; or equivalently, k AND NOT n is zero, where AND and NOT are bitwise operators. - Chai Wah Wu, Feb 09 2016 and N. J. A. Sloane, Feb 10 2016
Sum_{k>=0} T(n, k) = A001316(n) = 2^A000120(n).
T(n,k) = T(n-1,k-1) XOR T(n-1,k), 0 < k < n; T(n,0) = T(n,n) = 1. - Reinhard Zumkeller, Dec 13 2009
T(n,k) = (T(n-1,k-1) + T(n-1,k)) mod 2 = |T(n-1,k-1) - T(n-1,k)|, 0 < k < n; T(n,0) = T(n,n) = 1. - Rick L. Shepherd, Feb 23 2018
From Vladimir Shevelev, Dec 31 2013: (Start)
For polynomial {s_n(x)} we have
s_0(x)=1; for n>=1, s_n(x) = Product_{i=1..A000120(n)} (x^(2^k_i) + 1),
if the binary expansion of n is n = Sum_{i=1..A000120(n)} 2^k_i;
G.f. Sum_{n>=0} s_n(x)*z^n = Product_{k>=0} (1 + (x^(2^k)+1)*z^(2^k)) (0
Let x>1, t>0 be real numbers. Then
Sum_{n>=0} 1/s_n(x)^t = Product_{k>=0} (1 + 1/(x^(2^k)+1)^t);
Sum_{n>=0} (-1)^A000120(n)/s_n(x)^t = Product_{k>=0} (1 - 1/(x^(2^k)+1)^t).
In particular, for t=1, x>1, we have
Sum_{n>=0} (-1)^A000120(n)/s_n(x) = 1 - 1/x. (End)
From Valentin Bakoev, Jul 11 2020: (Start)
(See my comment about the matrix M_n.) Denote by T(i,j) the number in the i-th row and j-th column of M_n (0 <= i, j < 2^n). When i>=j, T(i,j) is the j-th number in the i-th row of the Sierpinski's triangle. For given i and j, we denote by k the largest integer of the type k=2^m and k
T(i,0) = T(i,i) = 1, or
T(i,j) = 0 if i < j, or
T(i,j) = T(i-k,j), if j < k, or
T(i,j) = T(i-k,j-k), if j >= k.
Thus, for given i and j, T(i,j) can be computed in O(log_2(i)) steps. (End)

Extensions

Additional links from Lekraj Beedassy, Jan 22 2004

A074664 Number of algebraically independent elements of degree n in the algebra of symmetric polynomials in noncommuting variables.

Original entry on oeis.org

1, 1, 2, 6, 22, 92, 426, 2146, 11624, 67146, 411142, 2656052, 18035178, 128318314, 954086192, 7396278762, 59659032142, 499778527628, 4341025729290, 39035256389026, 362878164902216, 3482882959111530, 34472032118214598
Offset: 1

Author

Michael Somos, Aug 29 2002

Keywords

Comments

Also the number of irreducible set partitions of size n (see A055105) {1}; {1,2}; {1,2,3}, {1,23}; ...; and also the number of set partitions of n which do not have a proper subset of parts with a union equal to a subset {1,2,...,j} with j < n (atomic set partitions, see A087903) {1}; {12}; {13,2}, {123}; ...
Also the number of non-nesting permutations on n elements (see He et al.). - Chad Brewbaker, Apr 11 2010
The Chen-Li-Wang link presents a bijection from indecomposable (= atomic) partitions to irreducible partitions. - David Callan, May 13 2014
From David Callan, Jul 21 2017: (Start)
The "non-nesting" permutations in Definition 2.2 of the He et al. reference seem to be the permutations whose inverses avoid all four of the patterns 14-23, 23-14, 32-41, and 41-32 (no nested ascents or descents), counted by 1, 2, 6, 20, 68, 240, 848, 3048, ... .
a(n) is the number of permutations of [n-1] with no nested descents, that is, permutations of [n-1] that avoid both of the dashed patterns 32-41 and 41-32. For example, for p = 823751694, the descents 82 and 75 are nested, as are the descents 75 and 94, but 82 and 94 are not because neither of the intervals [2,8] and [4,9] is contained in the other. Since 82 and 75 are nested, 8275 is a 41-32 pattern in p. (End)

Examples

			G.f. = x + x^2 + 2*x^3 + 6*x^4 + 22*x^5 + 92*x^6 + 426*x^7 + 2146*x^8 + ...
m{1} = x1 + x2 + x3 + ..., so a(1) = 1.
m{1,2} = x1 x2 + x2 x1 + x2 x3 + x3 x2 + x1 x3 + ..., m{12} = x1 x1 + x2 x2 + x3 x3 + ... where m{1} m{1} = m{1,2} + m{12}, so a(2) = 2-1 = 1.
m{1,2,3} = x1 x2 x3 + x1 x2 x4 + x1 x3 x4 + ..., m{12,3} = x1 x1 x2 + x2 x2 x1 + ..., m{13,2} = x1 x2 x1 + x2 x1 x2 + ..., m{1,23} = x1 x2 x2 + x2 x1 x1 + ..., m{123} = x1 x1 x1 + x2 x2 x2 + ... and there are 3 independent relations among these 5 elements m{12} m{1} = m{123} + m{12,3}, m{1} m{12} = m{123} + m{1,23}, m{1} m{1,1} = m{1,2,3} + m{12,3} + m{13,2} so a(3) = 5-3 = 2.
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4, Section 7.2.1.7, Problem 26.

Crossrefs

Row sums of A055105, A055106, A055107. Cf. A098742, A003319.
Row sums of A087903, A055105, A055106, A055107.

Programs

  • Maple
    T := proc(n, k) option remember; local j;
        if k=n then 1
      elif k<0 then 0
      else k*T(n-1,k) + add(T(n-1,j), j=k-1..n-1)
        fi end:
    A074664 := n -> T(n, 0);
    seq(A074664(n), n=0..22); # Peter Luschny, May 13 2014
  • Mathematica
    nmax = 23; A087903[n_, k_] := A087903[n, k] = StirlingS2[n-1, k] + Sum[ (k-d-1)*A087903[n-j-1, k-d]*StirlingS2[j, d], {d, 0, k-1}, {j, 0, n-2}]; a[n_] := Sum[ A087903[n, k], {k, 1, n-1}]; a[1] = 1; Table[a[n], {n, 1, nmax}](* Jean-François Alcover, Oct 04 2011, after Philippe Deléham *)
    Clear[t, n, k, i, nn, x]; coeff = ConstantArray[1, 23]; mp[m_,e_] := If[e==0, IdentityMatrix@ Length@ m, MatrixPower[m, e]]; nn = Length[coeff]; cc = Range[nn]*0 + 1; Monitor[ Do[Clear[t]; t[n_, 1] := t[n, 1] = cc[[n]];
      t[n_, k_] := t[n, k] = If[n >= k,
         Sum[t[n - i, k - 1], {i, 1, 2 - 1}] +
          Sum[t[n - i, k], {i, 1, 2 - 1}], 0];
      A4 = Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}];
      A5 = A4[[1 ;; nn - 1]]; A5 = Prepend[A5, ConstantArray[0, nn]];
      cc = Total[
        Table[coeff[[n]]*mp[A5, n - 1][[All, 1]], {n, 1,
          nn}]];, {i, 1, nn}], i]; cc
    (* Mats Granvik, Jul 11 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 - 1 / serlaplace( exp( exp( x + x * O(x^n)) - 1)), n))};
    
  • PARI
    x='x+O('x^100); B=exp(exp(x) - 1); Vec( 1-1/serlaplace(B)) \\ Joerg Arndt, Aug 13 2015

Formula

G.f.: 1 - 1 / B(x) where B(x) = g.f. for A000110 the Bell numbers.
a(n) = Sum_{k=1..n-1} A087903(n,k). a(n+1) = Sum_{k=0..n} A086329(n,k). a(n+2) = Sum_{k=0..n} A086211(n,k). - Philippe Deléham, Jun 13 2004
G.f.: x / (1 - (x - x^2) / (1 - x - (x - 2*x^2) / (1 - 2*x - (x - 3*x^2) / ...))) (a continued fraction). - Michael Somos, Sep 22 2005
Hankel transform is A000142. - Philippe Deléham, Jun 21 2007
From Paul Barry, Nov 26 2009: (Start)
G.f.: (of 1,1,2,6,...) 1/(1-x-x^2/(1-3x-2x^2/(1-4x-3x^2/(1-5x-4x^2/(1-6x-5x^2/(1-... (continued fraction);
G.f.: (of 1,2,6,...) 1/(1-2x-2x^2/(1-3x-3x^2/(1-4x-4x^2/(1-5x-5x^2/(1-... (continued fraction). (End)
G.f.: 1/(1-x/(1-x/(1-2x/(1-x/(1-3x/(1-x/(1-4x/(1-x/(1-5x/(1-x/(1-... (continued fraction). - Paul Barry, Mar 03 2010
G.f. satisfies: A(x) = x/(1 - (1-x)*A( x/(1-x) )). - Paul D. Hanna, Aug 15 2010
a(n) = upper left term in M^(n-1), where M is the following infinite square production matrix:
1, 1, 0, 0, 0, 0, ...
1, 2, 1, 0, 0, 0, ...
1, 1, 3, 1, 0, 0, ...
1, 1, 1, 4, 1, 0, ...
1, 1, 1, 1, 5, 1, ...
1, 1, 1, 1, 1, 6, ...
...
a(n) = sum of top row terms in M^(n-2). Example: top row of M^4 = (22, 31, 28, 10, 1, 0, 0, 0, ...), where 22 = a(5) and (22 + 31 + 28 + 10 + 1) = 92 = a(6). - Gary W. Adamson, Jul 11 2011
From Sergei N. Gladkovskii, Sep 28 2012 to May 19 2013: (Start)
Continued fractions:
G.f.: (2+(x^2-4)/(U(0)-x^2+4))/x where U(k) = k*(2*k+3)*x^2 + x - 2 - (2 - x + 2*k*x)*(2 + 3*x + 2*k*x)*(k+1)*x^2/U(k+1).
G.f.: (1+U(0))/x where U(k) = +x*k - 1 + x - x^2*(k+1)/U(k+1).
G.f.: 1 + 1/x - U(0)/x where U(k) = 1 + x - x*(k+1)/(1 - x/U(k+1)).
G.f.: 1/U(0) where U(k) = 1 - x*(k+1)/(1 - x/U(k+1)).
G.f.: 1/x - ((1+x)/x)/G(0) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-1) - x*(2*k+1)*(2*k+3)*(2*x*k-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+x-1)/G(k+1))).
G.f.: (1 - G(0))/x where G(k) = 1 - x/(1 - x*(k + 1)/G(k+1)).
G.f.: 1/Q(0) where Q(k) = 1 + x/(x*k - 1)/Q(k+1).
G.f.: Q(0) where Q(k) = 1 + x/(1 - x + x*(k+1)/(x - 1/Q(k+1))). (End)

Extensions

Edited by Mike Zabrocki, Sep 03 2005

A122367 Dimension of 3-variable non-commutative harmonics (twisted derivative) of order n. The dimension of the space of non-commutative polynomials of degree n in 3 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( xi w ) = w and d_{xi} ( xj w ) = 0 for i != j).

Original entry on oeis.org

1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, 75025, 196418, 514229, 1346269, 3524578, 9227465, 24157817, 63245986, 165580141, 433494437, 1134903170, 2971215073, 7778742049, 20365011074, 53316291173, 139583862445, 365435296162, 956722026041
Offset: 0

Author

Mike Zabrocki, Aug 30 2006

Keywords

Comments

Essentially identical to A001519.
From Matthew Lehman, Jun 14 2008: (Start)
Number of monotonic rhythms using n time intervals of equal duration (starting with n=0).
Representationally, let 0 be an interval which is "off" (rest),
1 an interval which is "on" (beep),
1 1 two consecutive "on" intervals (beep, beep),
1 0 1 (beep, rest, beep) and
1-1 two connected consecutive "on" intervals (beeeep).
For f(3)=13:
0 0 0, 0 0 1, 0 1 0, 0 1 1, 0 1-1, 1 0 0, 1 0 1,
1 1 0, 1-1 0, 1 1 1, 1 1-1, 1-1 1, 1-1-1.
(End)
Equivalent to the number of one-dimensional graphs of n nodes, subject to the condition that a node is either 'on' or 'off' and that any two neighboring 'on' nodes can be connected. - Matthew Lehman, Nov 22 2008
Sum_{n>=0} arctan(1/a(n)) = Pi/2. - Jaume Oliver Lafont, Feb 27 2009
This is the limit sequence for certain generalized Pell numbers. - Gregory L. Simay, Oct 21 2024

Examples

			a(1) = 2 because x1-x2, x1-x3 are both of degree 1 and are killed by the differential operator d_x1 + d_x2 + d_x3.
a(2) = 5 because x1*x2 - x3*x2, x1*x3 - x2*x3, x2*x1 - x3*x1, x1*x1 - x2*x1 - x2*x2 + x1*x2, x1*x1 - x3*x1 - x3*x3 + x3*x1 are all linearly independent and are killed by d_x1 + d_x2 + d_x3, d_x1 d_x1 + d_x2 d_x2 + d_x3 d_x3 and Sum_{j = 1..3} (d_xi d_xj, i).
		

Crossrefs

Programs

  • Magma
    [Fibonacci(2*n+1): n in [0..40]]; // Vincenzo Librandi, Jul 04 2015
    
  • Maple
    a:=n->if n=0 then 1; elif n=1 then 2 else 3*a(n-1)-a(n-2); fi;
    A122367List := proc(m) local A, P, n; A := [1,2]; P := [2];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(A), P[-1]]);
    A := [op(A), P[-1]] od; A end: A122367List(30); # Peter Luschny, Mar 24 2022
  • Mathematica
    Table[Fibonacci[2 n + 1], {n, 0, 30}] (* Vincenzo Librandi, Jul 04 2015 *)
  • PARI
    Vec((1-x)/(1-3*x+x^2) + O(x^50)) \\ Michel Marcus, Jul 04 2015

Formula

G.f.: (1-q)/(1-3*q+q^2). More generally, (Sum_{d=0..n} (n!/(n-d)!*q^d)/Product_{r=1..d} (1 - r*q)) / (Sum_{d=0..n} q^d/Product_{r=1..d} (1 - r*q)) where n=3.
a(n) = 3*a(n-1) - a(n-2) with a(0) = 1, a(1) = 2.
a(n) = Fibonacci(2n+1) = A000045(2n+1). - Philippe Deléham, Feb 11 2009
a(n) = (2^(-1-n)*((3-sqrt(5))^n*(-1+sqrt(5)) + (1+sqrt(5))*(3+sqrt(5))^n)) / sqrt(5). - Colin Barker, Oct 14 2015
a(n) = Sum_{k=0..n} Sum_{i=0..n} binomial(k+i-1, k-i). - Wesley Ivan Hurt, Sep 21 2017
a(n) = A048575(n-1) for n >= 1. - Georg Fischer, Nov 02 2018
a(n) = Fibonacci(n)^2 + Fibonacci(n+1)^2. - Michel Marcus, Mar 18 2019
a(n) = Product_{k=1..n} (1 + 4*cos(2*k*Pi/(2*n+1))^2). - Seiichi Manyama, Apr 30 2021
From J. M. Bergot, May 27 2022: (Start)
a(n) = F(n)*L(n+1) + (-1)^n where L(n)=A000032(n) and F(n)=A000045(n).
a(n) = (L(n)^2 + L(n)*L(n+2))/5 - (-1)^n.
a(n) = 2*(area of a triangle with vertices at (L(n-1), L(n)), (F(n+1), F(n)), (L(n+1), L(n+2))) - 5*(-1)^n for n > 1. (End)
G.f.: (1-x)/(1-3x+x^2) = 1/(1-2x-x^2-x^3-x^4-...) - Gregory L. Simay, Oct 21 2024
E.g.f.: exp(3*x/2)*(5*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Nov 07 2024
From Peter Bala, May 04 2025: (Start)
a(n) = sqrt(2/5) * sqrt( 1 - T(2*n+1, - 3/2) ), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind.
a(2*n+1/2) = sqrt(5)*a(n)^2 - 2/sqrt(5).
a(3*n+1) = 5*a(n)^3 - 3*a(n); hence a(n) divides a(3*n+1).
a(4*n+3/2) = 5^(3/2)*a(n)^4 - 4*sqrt(5)*a(n)^2 + 2/sqrt(5).
a(5*n+2) = (5^2)*a(n)^5 - 5*5*a(n)^3 + 5*a(n); hence a(n) divides a(5*n+2).
See A034807 for the unsigned coefficients [1, 2; 1, 3; 1, 4, 2; 1, 5, 5; ...].
In general, for k >= 0, a(k*n + (k-1)/2) = a(-1/2) * T(k, a(n)/a(-1/2)), where a(n) = (2^(-1-n)*((3 - sqrt(5))^n *(-1 + sqrt(5)) + (1 + sqrt(5))*(3 + sqrt(5))^n)) / sqrt(5), as given above, and a(-1/2) = 2/sqrt(5).
The aerated sequence [b(n)]n>=1 = [1, 0, 2, 0, 5, 0, 13, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -5, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy.
Sum_{n >= 1} 1/(a(n) - 1/a(n)) = 1 (telescoping series: for n >= 1, 1/(a(n) - 1/a(n)) = 1/A001906(n) - 1/A001906(n+1).) (End)

A112340 Triangle read by rows of numbers b_{n,k}, n>=1, 1<=k<=n such that Product_{n,k} 1/(1-q^n t^k)^{b_{n,k}} = 1 + Sum_{i,j>=1} S_{i,j} q^i t^j where S_{i,j} are entries in the table A008277 (the inverse Euler transformation of the table of Stirling numbers of the second kind).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 5, 3, 0, 1, 13, 16, 4, 0, 1, 28, 67, 34, 5, 0, 1, 60, 249, 229, 65, 6, 0, 1, 123, 853, 1265, 609, 107, 7, 0, 1, 251, 2787, 6325, 4696, 1376, 168, 8, 0, 1, 506, 8840, 29484, 31947, 14068, 2772, 244, 9, 0, 1, 1018, 27503, 131402, 199766, 124859, 36252
Offset: 1

Author

Mike Zabrocki, Sep 05 2005; Aug 06 2006

Keywords

Comments

Row sums equal to A085686, second column = A084174 - 1
The number of set partitions of size n length k which are 'Lyndon,' that is, since all set partitions are isomorphic to sequences of atomic set partitions (A087903), those which are smallest of all rotations of these sequences in lex order (with respect to some ordering on the atomic set partitions) are Lyndon. 1; 1, 0; 1, 2, 0; 1, 5, 3, 0; 1, 13, 16, 4, 0;

Examples

			There are 6 set partitions of size 4 and length 3, {12|3|4}, {13|2|4}, {14|2|3}, {1|23|4}, {1|24|3}, {1|2|34} and the sequences the correspond to are ({12},{1},{1}), ({13|2}, {1}), ({14|2|3}), ({1},{12},{1}), ({1},{13|2}), ({1},{1},{12}). Now there are three {({12},{1},{1}), ({1},{12},{1}), ({1},{1},{12})} that are rotations of each other and ({1}, {1}, {12}) is the smallest of these, {({13|2}, {1}), ({1},{13|2})} are rotations of each other and ({1},{13|2}) is the smallest and ({14|2|3}) is atomic and all atomic s.p. are Lyndon. Hence {1|2|34}, {1|24|3}, {14|2|3} are Lyndon and a(4,3) = 3
Triangle begins:
  1;
  1,  0;
  1,  2,  0;
  1,  5,  3,  0;
  1, 13, 16,  4, 0;
  1, 28, 67, 34, 5, 0;
  ...
		

Crossrefs

Programs

  • Maple
    EULERitable:=proc(tbl) local ser,out,i,j,tmp; ser:=1+add(add(q^i*t^j*tbl[i][j], j=1..nops(tbl[i])), i=1..nops(tbl)); out:=[]; for i from 1 to nops(tbl) do tmp:=coeff(ser,q,i); ser:=expand(ser*mul(add((-q^i*t^j)^k*choose(abs(coeff(tmp,t,j)),k),k=0..nops(tbl)/i), j = 1..degree(tmp,t))); ser:=subs({seq(q^j=0,j=nops(tbl)+1..degree(ser,q))},ser); out:=[op(out),[seq(abs(coeff(tmp,t,j)), j=1..degree(tmp,t))]]; end do; out; end: EULERitable([seq([seq(combinat[stirling2](n,k),k=1..n)],n=1..10)]);
  • Mathematica
    nmax = 11; b[n_, k_] /; k < 1 || k > n = 0;
    coes[m_] := Product[1/(1 - q^n t^k)^b[n, k], {n, 1, m}, {k, 1, m}] - 1 - Sum[ StirlingS2[i, j] q^i t^j, {i, 1, m}, {j, 1, m}] + O[t]^m + O[q]^m // Normal // CoefficientList[#, {t, q}]&;
    sol[1] = {b[1, 1] -> 1};
    Do[sol[m] = Solve[Thread[(coes[m] /. sol[m - 1]) == 0]], {m, 2, nmax + 1}];
    bb = Flatten[Table[sol[m], {m, 1, nmax + 1}]];
    Table[b[n, k] /. bb, {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 11 2017 *)

A122369 Dimension of 5-variable non-commutative harmonics (twisted derivative). The dimension of the space of non-commutative polynomials in 5 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( xi w ) = w and d_{xi} ( xj w ) = 0 for i/=j).

Original entry on oeis.org

1, 4, 19, 93, 459, 2273, 11274, 55964, 277924, 1380527, 6858356, 34074280, 169297743, 841173845, 4179517118, 20766807551, 103184684826, 512698227699, 2547469553647, 12657750705603, 62893284231103, 312501512711984, 1552744642741738, 7715214279423070
Offset: 0

Author

Mike Zabrocki, Aug 30 2006

Keywords

Examples

			a(1) = 4 because x1-x2, x2-x3, x3-x4, x4-x5 are all of degree 1 and are killed by the differential operator d_x1+d_x2+d_x3+d_x4+d_x5.
		

References

  • C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.
  • M. C. Wolf, Symmetric functions of noncommutative elements, Duke Math. J. 2 (1936), 626-637.

Programs

  • Maple
    coeffs(convert(series((1-6*q+11*q^2-6*q^3)/(1-10*q+32*q^2-37*q^3+11*q^4),q,30),`+`)-O(q^30),q);
  • Mathematica
    gf = With[{n = 5}, Sum[n!/(n-d)! q^d/Product[(1 - r q), {r, 1, d}], {d, 0, n}]/Sum[ q^d/Product[(1 - r q), {r, 1, d}], {d, 0, n}]]; CoefficientList[gf + O[q]^22, q] (* Jean-François Alcover, Nov 17 2018 *)

Formula

G.f. (1-6*q+11*q^2-6*q^3)/(1-10*q+32*q^2-37*q^3+11*q^4) more generally, sum( n!/(n-d)!*q^d/prod((1-r*q),r=1..d), d=0..n)/sum( q^d/prod((1-r*q),r=1..d), d=0..n) where n=5.

A109062 Triangle read by rows: number of atomic set compositions of size n and length k (see description in A095989) 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 11, 23, 13, 1, 26, 112, 158, 71, 1, 57, 446, 1170, 1241, 461, 1, 120, 1593, 6880, 12871, 10912, 3447, 1, 247, 5337, 35503, 103887, 150413, 106031, 29093, 1, 502, 17190, 168982, 724148, 1589266, 1872286, 1128218, 273343, 1, 1013, 54008
Offset: 1

Author

Mike Zabrocki, Aug 24 2005

Keywords

Comments

Also the number of free generators and primitives of the quasi-symmetric functions in non-commuting variables. - Mike Zabrocki, Aug 06 2006
Triangle given by [1,0,2,0,3,0,4,0,5,...] DELTA [1,2,2,3,3,4,4,5,5,6,6,7,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 01 2007
Apparently, the alternating sums vanish for n > 1. - F. Chapoton, Sep 05 2023

Examples

			Atomic set compositions a(1,1)=1: [{1}]; a(2,1)=1, a(2,2)=1: [{12}], [{2},{1}]; a(3,1)=1, a(3,2)=4, a(3,3)=3: [{123}], [{2},{13}], [{3}, {12}], [{23}, {1}], [{13},{2}], [{2},{3},{1}], [{3},{1},{2}], [{3},{2},{1}].
Triangle begins:
  1;
  1,  1;
  1,  4,   3;
  1, 11,  23,  13;
  1, 26, 112, 158, 71;
  ...
		

Crossrefs

Row sums are equal to A095989, a(n,n) = A003319, a(n,2) = A000295.

Programs

  • Maple
    f:=(n,k)->coeff(coeff(series(1-1/(1+add(add(q^m*t^i*
        Stirling2(m,i)*i!,i=1..m),m=1..n)),q,n+1),q,n),t,k):
    seq(seq(f(n,k), k=1..n), n=1..10);

Formula

G.f.: 1-1/(1+Sum_{n>=1} Sum_{k=1..n} q^n*t^k*Stirling2(n,k)*k!).

A122368 Dimension of 4-variable non-commutative harmonics (twisted derivative). The dimension of the space of non-commutative polynomials in 4 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( xi w ) = w and d_{xi} ( xj w ) = 0 for i/=j).

Original entry on oeis.org

1, 3, 11, 42, 162, 627, 2430, 9423, 36549, 141777, 549990, 2133594, 8276985, 32109534, 124565121, 483235875, 1874657763, 7272519066, 28212902154, 109448714619, 424593725526, 1647162628047, 6389978382405, 24789187818585
Offset: 1

Author

Mike Zabrocki, Aug 30 2006

Keywords

Comments

Empirical: a(n) is the sum of the greatest elements over all lexicographically greatest elements in all partitions in the canonical basis of the Temperley-Lieb algebra of order n. - John M. Campbell, Oct 17 2017

Examples

			a(1) = 3 because x1-x2, x2-x3, x3-x4 are all of degree 1 and are killed by the differential operator d_x1+d_x2+d_x3+d_x4
For example, the canonical basis of the Temperley-Lieb algebra of order 3 is {{{-3, 1}, {-2, -1}, {2, 3}}, {{-3, 3}, {-2, 2}, {-1, 1}}, {{-3, 3}, {-2, -1}, {1, 2}}, {{-3, -2}, {-1, 1}, {2, 3}}, {{-3, -2}, {-1, 3}, {1, 2}}}, and the lexicographically greatest elements among all partitions in this basis are {2, 3}, {-1, 1}, {1, 2}, {2, 3}, and {1, 2}, with a(3) = 3+1+2+3+2 = 11. - _John M. Campbell_, Oct 17 2017
		

Programs

  • Maple
    coeffs(convert(series((1-3*q+2*q^2)/(1-6*q+9*q^2-3*q^3),q,30),`+`)-O(q^30),q);
  • Mathematica
    LinearRecurrence[{6, -9, 3}, {1, 3, 11}, 24] (* Jean-François Alcover, Sep 22 2017 *)

Formula

O.g.f.: (1-3*q+2*q^2)/(1-6*q+9*q^2-3*q^3) more generally, sum( n!/(n-d)!*q^d/prod((1-r*q),r=1..d), d=0..n)/sum( q^d/prod((1-r*q),r=1..d), d=0..n) where n=4

A122370 Dimension of 6-variable non-commutative harmonics (twisted derivative). The dimension of the space of non-commutative polynomials in 6 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( xi w ) = w and d_{xi} ( xj w ) = 0 for i/=j).

Original entry on oeis.org

1, 5, 29, 172, 1026, 6134, 36712, 219847, 1316963, 7890594, 47282065, 283344410, 1698058817, 10176618298, 60990528210, 365532989831, 2190756912988, 13129979193808, 78692862940748, 471636719623539
Offset: 0

Author

Mike Zabrocki, Aug 30 2006

Keywords

Examples

			a(1) = 5 because x1-x2, x2-x3, x3-x4, x4-x5, x5-x6 are all of degree 1 and are killed by the differential operator d_x1+d_x2+d_x3+d_x4+d_x5+d_x6.
		

References

  • C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.
  • M. C. Wolf, Symmetric functions of noncommutative elements, Duke Math. J. 2 (1936), 626-637.

Programs

  • Maple
    coeffs(convert(series((1-10*q+35*q^2-50*q^3+24*q^4)/ (1-15*q+81*q^2 -192*q^3+189*q^4 -53*q^5),q,20), `+`) -O(q^20),q)
  • Mathematica
    LinearRecurrence[{15, -81, 192, -189, 53}, {1, 5, 29, 172, 1026}, 20] (* Jean-François Alcover, Sep 22 2017 *)

Formula

o.g.f. (1-10*q+35*q^2-50*q^3+24*q^4) / (1-15*q+81*q^2 -192*q^3+189*q^4 -53*q^5) more generally, sum( n!/(n-d)!*q^d/prod((1-r*q),r=1..d), d=0..n) / sum( q^d/prod((1-r*q),r=1..d), d=0..n) where n=6.

A122371 Dimension of 7-variable non-commutative harmonics (twisted derivative). The dimension of the space of non-commutative polynomials in 7 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( xi w ) = w and d_{xi} ( xj w ) = 0 for i/=j).

Original entry on oeis.org

1, 6, 41, 285, 1989, 13901, 97215, 680079, 4758408, 33297267, 233014444, 1630701426, 11412409945, 79870754268, 558989013403, 3912210491549, 27380636068267, 191631324294463, 1341190961828143, 9386756237545989
Offset: 0

Author

Mike Zabrocki, Aug 30 2006

Keywords

Examples

			a(1) = 6 because x1-x2, x2-x3, x3-x4, x4-x5, x5-x6, x6-x7 are all of degree 1 and are killed by the differential operator d_x1+d_x2+d_x3+d_x4+d_x5+d_x6+d_x7.
		

References

  • C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.
  • M. C. Wolf, Symmetric functions of noncommutative elements, Duke Math. J. 2 (1936), 626-637.

Programs

  • Maple
    coeffs(convert(series((1-15*q+ 85*q^2-225*q^3+274*q^4-120*q^5) / (1-21*q+170*q^2-669*q^3+1314*q^4-1157*q^5+309*q^6),q,20),`+`)-O(q^20),q);
  • Mathematica
    LinearRecurrence[{21, -170, 669, -1314, 1157, -309}, {1, 6, 41, 285, 1989, 13901}, 20] (* Jean-François Alcover, Sep 22 2017 *)

Formula

G.f.: (1-15*q+ 85*q^2-225*q^3+274*q^4-120*q^5) / (1-21*q+170*q^2-669*q^3 +1314*q^4-1157*q^5 +309*q^6) more generally, sum( n!/(n-d)!*q^d/prod((1-r*q),r=1..d), d=0..n)/sum( q^d/prod((1-r*q), r=1..d), d=0..n) where n=7.

A122372 Dimension of 8-variable non-commutative harmonics (twisted derivative). The dimension of the space of non-commutative polynomials in 8 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( xi w ) = w and d_{xi} ( xj w ) = 0 for i/=j).

Original entry on oeis.org

1, 7, 55, 438, 3498, 27962, 223604, 1788406, 14305102, 114429193, 915366442, 7322521512, 58577537621, 468602617723, 3748697751384, 29988696932490, 239903055854075, 1919175464438065, 15353030007717639, 122821355074655309
Offset: 0

Author

Mike Zabrocki, Aug 30 2006

Keywords

Examples

			A122371 a(1) = 7 because x1-x2, x2-x3, x3-x4, x4-x5, x5-x6, x6-x7, x7-x8 are all of degree 1 and are killed by the differential operator d_x1+d_x2+d_x3+d_x4+d_x5+d_x6+d_x7.
		

Programs

  • Maple
    coeffs(convert(series((1-21*q+175*q^2-735*q^3+1624*q^4-1764*q^5+720*q^6)/ (1-28*q+316*q^2-1845*q^3+5925*q^4-10190*q^5+8249*q^6-2119*q^7), q,20),`+`)-O(q^20),q);
  • Mathematica
    n = 8; gf = Sum[n!/(n-d)! q^d/Product[(1 - r q), {r, 1, d}], {d, 0, n}]/ Sum[q^d/Product[(1 - r q), {r, 1, d}], {d, 0, n}] + O[q]^20;
    CoefficientList[gf, q] (* Jean-François Alcover, Dec 03 2018 *)

Formula

G.f.: (1-21*q+175*q^2-735*q^3+1624*q^4-1764*q^5+720*q^6)/ (1-28*q+316*q^2-1845*q^3+5925*q^4-10190*q^5+8249*q^6-2119*q^7) more generally, sum( n!/(n-d)!*q^d/prod((1-r*q),r=1..d), d=0..n) / sum( q^d/prod((1-r*q), r=1..d), d=0..n) where n=8.
Showing 1-10 of 11 results. Next