cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A086451 Numbers not in A086335.

Original entry on oeis.org

14, 27, 30, 34, 45, 49, 51, 91, 92, 95, 97, 101, 108, 109, 123, 126, 127, 131, 140, 145, 160, 170, 185, 186, 195, 199, 201, 211, 212, 215, 224, 226, 244, 250, 263, 265, 279, 293, 303, 314, 317, 325, 347, 351, 360, 370, 371, 375, 379, 381, 395, 399, 403, 404
Offset: 1

Views

Author

Roger L. Bagula, Sep 14 2003

Keywords

Crossrefs

Extensions

Edited by N. J. A. Sloane, May 25 2006

A086841 a(n) = a((a(n-2))*mod(n,2)+a(n-1)*(1-mod(n,2))) + a((n - a(n-2))*mod(n,2)+(n-a(n-1))*(1-mod(n,2))).

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 8, 8, 8, 8, 9, 10, 11, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 16, 16, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 24, 25, 26, 27, 26, 27, 28, 28, 29, 30, 29, 30, 30, 31, 31, 31, 31, 32, 32, 32, 32, 32, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 41, 42
Offset: 1

Views

Author

Roger L. Bagula, Sep 15 2003

Keywords

Comments

Let M = A005229, C = A004001. Then we may define a pair of new sequences by o1 = M*mod(n,2)+C*(1-mod(n,2)) (this sequence), o2 = C*mod(n,2)+M*(1-mod(n,2)) (A086525 - or is it A086335?).

Crossrefs

Cf. A005229, A086525, A086335. Different from A004001.

Programs

  • Mathematica
    digits = 200 Mc[n_Integer?Positive] := Mc[n] = Mc[( Mc[n-2])*(Mod[n, 2])+Mc[n-1]*(1-Mod[n, 2])] + Mc[(n - Mc[n-2])*(Mod[n, 2])+(n-Mc[n-1])*(1-Mod[n, 2])] Mc[1] = Mc[2] = 1 a1=Table[Mc[n], {n, 1, digits}]

Extensions

Edited by N. J. A. Sloane, Nov 07 2007

A086525 a(n) = a(( a(n-2))*(1-mod(n,2))+a(n-1)*(mod(n,2))) + a((n - a(n-2))*(1-mod(n,2))+(n-a(n-1))*(mod(n,2))).

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 13, 13, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23, 23, 24, 25, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 32, 33, 34, 34, 35, 36, 37, 37, 38, 39, 40, 40, 41, 42, 42, 43, 44, 44, 45, 46, 47, 47, 48, 49, 50, 50, 51, 52, 52
Offset: 1

Views

Author

Roger L. Bagula, Sep 14 2003

Keywords

Comments

The sequence o2 mentioned in A086841.

Crossrefs

Programs

  • Mathematica
    digits=200 Mc[n_Integer?Positive] :Mc[n] =Mc[( Mc[n-2])*(1-Mod[n, 2])+Mc[n-1]*(Mod[n, 2])] + Mc[(n - Mc[n-2])*(1-Mod[n, 2])+(n-Mc[n-1])*(Mod[n, 2])] Mc[1] = Mc[2] = 1 a1=Table[Mc[n], {n, 1, digits}]

Extensions

Edited by N. J. A. Sloane, Nov 07 2007

A086835 a(n) = a( (n - a(n-1))*(n mod 2) + a(n-1)*(1 - (n mod 2)) ) + a( (n - a(n-2))*(n mod 2) + (n - a(n-1))*(1 - (n mod 2)) ), with a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 4, 4, 8, 5, 5, 8, 8, 7, 8, 8, 16, 9, 7, 12, 15, 12, 9, 16, 16, 13, 12, 16, 24, 19, 12, 20, 23, 14, 23, 17, 19, 14, 28, 24, 24, 25, 16, 24, 39, 32, 12, 25, 35, 31, 20, 32, 38, 22, 39, 44, 17, 40, 32, 36, 40, 36, 21, 31, 38, 30, 43, 32, 32, 34, 47, 28, 52, 44, 21, 54
Offset: 1

Views

Author

Roger L. Bagula, Sep 15 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Hc[n_]:= Hc[n] = If[n<3, 1, Hc[(n - Hc[n-1])*(Mod[n,2]) + Hc[n-1]*(1 -Mod[n,2])] + Hc[(n - Hc[n-2])*(Mod[n,2]) + (n - Hc[n-1])*(1 - Mod[n, 2])]];
    Table[Hc[n], {n, 100}]
  • SageMath
    @CachedFunction
    def Hc(n):
        if (n<3): return 1
        else: return Hc((n - Hc(n-1))*(n%2) + Hc(n-1)*(1-(n%2))) + Hc((n - Hc(n-2))*(n%2) + (n - Hc(n-1))*(1 -(n%2)))
    [Hc(n) for n in range(1,100)] # G. C. Greubel, Dec 05 2022

Extensions

Edited by G. C. Greubel, Dec 05 2022
Showing 1-4 of 4 results.