cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086341 a(n) = 2*2^floor(n/2) - (-1)^n.

Original entry on oeis.org

1, 3, 3, 5, 7, 9, 15, 17, 31, 33, 63, 65, 127, 129, 255, 257, 511, 513, 1023, 1025, 2047, 2049, 4095, 4097, 8191, 8193, 16383, 16385, 32767, 32769, 65535, 65537, 131071, 131073, 262143, 262145, 524287, 524289, 1048575, 1048577, 2097151, 2097153
Offset: 0

Views

Author

Paul Barry, Jul 16 2003

Keywords

Crossrefs

Cf. A016116 (2^floor(n/2)).

Programs

  • Magma
    [2*2^Floor(n/2)-(-1)^n: n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
    
  • Mathematica
    CoefficientList[Series[(1+2x)^2/((1+x)(1-2x^2)),{x,0,50}],x] (* or *) LinearRecurrence[ {-1,2,2},{1,3,3},50] (* Harvey P. Dale, Mar 10 2013 *)
  • PARI
    vector(40, n, n--; 2^(floor(n/2)+1) - (-1)^n) \\ G. C. Greubel, Nov 08 2018

Formula

E.g.f.: 2*cosh(sqrt(2)*x) + 2*sinh(sqrt(2)*x)/sqrt(2) - sinh(x) + cosh(x).
a(n) = (1 + 1/sqrt(2))*sqrt(2)^n + (1 - 1/sqrt(2))*(-sqrt(2))^n - (-1)^n.
G.f.: (1+2*x)^2/((1+x)*(1-2*x^2)). - Colin Barker, Aug 17 2012
a(n) = a(n-1) + 2*a(n-2) + 2*a(n-3); a(0)=1, a(1)=3, a(2)=3. - Harvey P. Dale, Mar 10 2013
From Amiram Eldar, Sep 14 2022: (Start)
Sum_{n>=0} 1/a(n) = A065442 + A323482 - 1/2.
Sum_{n>=0} (-1)^n/a(n) = 2 * A248721. (End)