cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086449 a(0) = 1, a(2n+1) = a(n), a(2n) = a(n) + a(n-1) + ... + a(n-2^m) + ... where a(n) = 0 for n < 0.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 4, 1, 8, 4, 8, 2, 12, 4, 8, 1, 18, 8, 16, 4, 26, 8, 16, 2, 34, 12, 24, 4, 36, 8, 16, 1, 48, 18, 36, 8, 60, 16, 32, 4, 80, 26, 52, 8, 78, 16, 32, 2, 104, 34, 68, 12, 110, 24, 48, 4, 136, 36, 72, 8, 108, 16, 32, 1, 154, 48, 96, 18, 160, 36, 72, 8
Offset: 0

Views

Author

Ralf Stephan, Jul 20 2003

Keywords

Comments

Conjecture: all a(n) are even except a(2^k-1) = 1. Also a(2^k-2) = 2^(k-1). [For proof see link.]
Setting m=0 gives Stern-Brocot sequence (A002487).
a(n) is the number of ways of writing n as a sum of powers of 2, where each power appears p times, with p itself a power of 2.

Examples

			From _Peter Luschny_, Sep 01 2019: (Start)
The sequence splits into rows of length 2^k:
  1
  1,  2
  1,  4, 2,  4
  1,  8, 4,  8, 2, 12, 4,  8
  1, 18, 8, 16, 4, 26, 8, 16, 2, 34, 12, 24, 4, 36, 8, 16
  ...
The first few partitions counted are (compare with the list in A174980):
[ 0]  [[]]
[ 1]  [[1]]
[ 2]  [[2], [1, 1]]
[ 3]  [[2, 1]]
[ 4]  [[4], [2, 2], [2, 1, 1], [1, 1, 1, 1]]
[ 5]  [[4, 1], [2, 2, 1]]
[ 6]  [[4, 2], [4, 1, 1], [2, 2, 1, 1], [2, 1, 1, 1, 1]]
[ 7]  [[4, 2, 1]]
[ 8]  [[8], [4, 4], [4, 2, 2], [4, 2, 1, 1], [4, 1, 1, 1, 1], [2, 2, 2, 2],
      [2, 2, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1]]
[ 9]  [[8, 1], [4, 4, 1], [4, 2, 2, 1], [2, 2, 2, 2, 1]]
[10]  [[8, 2], [8, 1, 1], [4, 4, 2], [4, 4, 1, 1], [4, 2, 2, 1, 1],
      [4, 2, 1, 1, 1, 1], [2, 2, 2, 2, 1, 1], [2, 1, 1, 1, 1, 1, 1, 1, 1]]
[11]  [[8, 2, 1], [4, 4, 2, 1]]
[12]  [[8, 4], [8, 2, 2], [8, 2, 1, 1], [8, 1, 1, 1, 1], [4, 4, 2, 2],
      [4, 4, 2, 1, 1], [4, 4, 1, 1, 1, 1], [4, 2, 2, 2, 2], [4, 2, 2, 1, 1, 1, 1],
      [4, 1, 1, 1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 1, 1, 1, 1],
      [2, 2, 1, 1, 1, 1, 1, 1, 1, 1]]
[13]  [[8, 4, 1], [8, 2, 2, 1], [4, 4, 2, 2, 1], [4, 2, 2, 2, 2, 1]]
[14]  [[8, 4, 2], [8, 4, 1, 1], [8, 2, 2, 1, 1], [8, 2, 1, 1, 1, 1],
      [4, 4, 2, 2, 1, 1], [4, 4, 2, 1, 1, 1, 1], [4, 2, 2, 2, 2, 1, 1],
      [4, 2, 1, 1, 1, 1, 1, 1, 1, 1]]
[15]  [[8, 4, 2, 1]]
(End)
		

Crossrefs

Programs

  • Magma
    m:=80; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1 + (&+[x^(2^(k+j)): j in [0..m/4]]): k in [0..m/4]]) )); // G. C. Greubel, Feb 11 2019
  • Maple
    A086449 := proc(n) option remember;
    local IndexSet, k; IndexSet := proc(n) local i, j, z;
    i := iquo(n,2); j := i; if odd::n then i := i-1; z := 1;
    while 0 <= i do j := j,i; i := i-z; z := z+z od fi; j end:
    if n < 2 then 1 else add(A086449(k),k=IndexSet(n)) fi end:
    seq(A086449(i),i=0..71); # Peter Luschny, May 06 2011
    # second Maple program:
    a:= proc(n) option remember; local r; `if`(n=0, 1,
          `if`(irem(n, 2, 'r')=1, a(r),
           a(r) +add(a(r-2^m), m=0..ilog2(r))))
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, May 30 2014
  • Mathematica
    nn=30;CoefficientList[Series[Product[1+Sum[x^(2^(k+j)),{j,0,nn}],{k,0,nn}],{x,0,nn}],x] (* Geoffrey Critzer, May 30 2014 *)

Formula

G.f.: Product_{k>=0} (1 + Sum_{j>=0} x^(2^(k+j))). [Corrected by Herbert S. Wilf, May 31 2006]