cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086466 Decimal expansion of 2*sqrt(5)/5 arccsch(2).

Original entry on oeis.org

4, 3, 0, 4, 0, 8, 9, 4, 0, 9, 6, 4, 0, 0, 4, 0, 3, 8, 8, 8, 9, 4, 3, 3, 2, 3, 2, 9, 5, 0, 6, 0, 5, 4, 2, 5, 4, 2, 4, 5, 7, 0, 6, 8, 2, 5, 4, 0, 2, 8, 9, 6, 5, 4, 7, 5, 7, 0, 0, 6, 1, 0, 3, 9, 9, 2, 5, 6, 1, 2, 1, 5, 4, 6, 1, 1, 3, 1, 9, 6, 1, 3, 6, 1, 4, 9, 0, 2, 6, 4, 6, 9, 7, 2, 1, 9, 9, 5, 5, 4, 0, 6
Offset: 0

Views

Author

Eric W. Weisstein, Jul 21 2003

Keywords

Comments

Equals the value of the Dirichlet L-series of the non-principal character modulo 5 (A080891) at s=1. - Jianing Song, Nov 16 2019

Examples

			0.43040894096400403888943323295060542542457...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.2, p. 7.

Crossrefs

Programs

  • Mathematica
    2*Log[GoldenRatio]/Sqrt[5] // RealDigits[#, 10, 102]& // First (* Jean-François Alcover, Apr 18 2014 *)
  • PARI
    2*log((1+sqrt(5))/2)/sqrt(5) \\ Stefano Spezia, Oct 15 2024

Formula

Equals Sum_{k>=1} (-1)^(k-1)/(k*binomial(2*k,k)).
Equals A010532 * A002390 / 10. - R. J. Mathar, Jul 26 2010
Also equals f'(0) = 2*log(phi)/sqrt(5), with f(x) = (phi^x-cos(Pi*x)*phi^-x)/sqrt(5), the real Fibonacci interpolating function. - Jean-François Alcover, Apr 04 2014
Equals Sum_{k>=1} A080891(k)/k = Sum_{k>=1} Kronecker(5,k)/k = 1 - 1/2 - 1/3 + 1/4 + 1/6 - 1/7 - 1/8 + 1/9 + ... - Jianing Song, Nov 16 2019
Equals Sum_{k>=1} F(k)/(k*2^(k+1)), where F(k) is the k-th Fibonacci number (A000045). - Amiram Eldar, Aug 10 2020
Sum_{k>=1} (2*k+1)*Lucas(k)/(k*(k+1)*2^k) = 10*c + 2 = 6.3040894096... where c is this constant (Seiffert, 1994). - Amiram Eldar, Jan 15 2022
Equals Sum_{k>=1} F(k)/(k*3^k), where F(k) is the k-th Fibonacci number (A000045). - Amiram Eldar, Jul 02 2023
Equals 1/Product_{p prime} (1 - Kronecker(5,p)/p), where Kronecker(5,p) = 0 if p = 5, 1 if p == 1 or 4 (mod 5) or -1 if p == 2 or 3 (mod 5). - Amiram Eldar, Dec 17 2023
Equals A344041/2. - Hugo Pfoertner, Oct 16 2024