A086514 Difference between the arithmetic mean of the neighbors of the terms and the term itself follows the pattern 0,1,2,3,4,5,...
1, 2, 3, 6, 13, 26, 47, 78, 121, 178, 251, 342, 453, 586, 743, 926, 1137, 1378, 1651, 1958, 2301, 2682, 3103, 3566, 4073, 4626, 5227, 5878, 6581, 7338, 8151, 9022, 9953, 10946, 12003, 13126, 14317, 15578, 16911, 18318, 19801, 21362, 23003, 24726
Offset: 1
Examples
2 = (1+3)/2 -0. 3 = (2+6)/2 - 1, 6 = (3+13)/2 - 2, etc.
Links
- B. Berselli, Table of n, a(n) for n = 1..10000 - _Bruno Berselli_, May 31 2010
- R. Zumkeller, Enumerations of Divisors - _Reinhard Zumkeller_, Jun 17 2009
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
PARI
a(n) = n*(n^2-6*n+14)/3-2 \\ Charles R Greathouse IV, Jun 11 2015
Formula
a(n)+ n-2 = {a(n-1) +a(n+1)}/2
a(n) = (n^3-6*n^2+14*n-6)/3.
Contribution from Bruno Berselli, May 31 2010: (Start)
G.f.: (1-2*x+x^2+2*x^3)/(1-x)^4.
a(n)-4*a(n-1)+6*a(n-2)-4*a(n-3)+a(n-4) = 0 with n>4. For n=9, 121-4*78+6*47-4*26+13 = 0.
Extensions
More terms from David Wasserman, Mar 10 2005
Comments