A086543 Number of partitions of n with at least one odd part.
0, 1, 1, 3, 3, 7, 8, 15, 17, 30, 35, 56, 66, 101, 120, 176, 209, 297, 355, 490, 585, 792, 946, 1255, 1498, 1958, 2335, 3010, 3583, 4565, 5428, 6842, 8118, 10143, 12013, 14883, 17592, 21637, 25525, 31185, 36711, 44583, 52382, 63261, 74173, 89134, 104303, 124754, 145698, 173525, 202268
Offset: 0
Keywords
Examples
a(4)=3 because we have [3,1],[2,1,1] and [1,1,1] ([4] and [2,2] do not qualify).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
Crossrefs
These partitions have ranks A366322.
Programs
-
Maple
g:=sum(x^(2*k-1)/product(1-x^j,j=1..2*k-1)/product(1-x^(2*j),j=k..70),k=1..70): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=0..45); # Emeric Deutsch, Mar 30 2006
-
Mathematica
nn=50;CoefficientList[Series[Sum[x^(2k-1)/Product[1-x^j,{j,1,2k-1}] /Product[(1-x^(2j)),{j,k,nn}],{k,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Sep 28 2013 *) Table[Length[Select[IntegerPartitions[n],Max[#]!=n/2&]],{n,0,30}] (* Gus Wiseman, Oct 12 2023 *)
-
PARI
x='x+O('x^66); concat([0], Vec(1/eta(x)-1/eta(x^2)) ) \\ Joerg Arndt, May 04 2013
Formula
G.f.: Sum_{k>=1} x^(2k-1)/((Product_{j=1..2k-1} (1-x^j))*(Product_{j>=k} (1-x^(2j)))). - Emeric Deutsch, Mar 30 2006
G.f.: 1/E(x) - 1/E(x^2) where E(x) = prod(n>=1, 1-x^n ); see Pari code. - Joerg Arndt, May 04 2013
Comments