A086576 a(n) = 5*(10^n - 1).
0, 45, 495, 4995, 49995, 499995, 4999995, 49999995, 499999995, 4999999995, 49999999995, 499999999995, 4999999999995, 49999999999995, 499999999999995, 4999999999999995, 49999999999999995, 499999999999999995, 4999999999999999995, 49999999999999999995, 499999999999999999995
Offset: 0
Examples
From _John Elias_, Jun 23 2021: (Start) 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45; 11 + 22 + 33 + 44 + 55 + 66 + 77 + 88 + 99 = 495; 111 + 222 + 333 + 444 + 555 + 666 + 777 + 888 + 999 = 4995; 1111 + 2222 + 3333 + 4444 + 5555 + 6666 + 7777 + 8888 + 9999 = 49995; 11111 + 22222 + 33333 + 44444 + 55555 + 66666 + 77777 + 88888 + 99999 = 499995; etc. (End)
Links
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
Crossrefs
Programs
-
Mathematica
Join[{0}, LinearRecurrence[{11,-10},{45,495},50]] (* G. C. Greubel, Jul 08 2016 *)
Formula
R(a(n)) = A086577(n).
From Chai Wah Wu, Jul 08 2016: (Start)
a(n) = 11*a(n-1) - 10*a(n-2) for n > 1.
G.f.: 45*x/((1 - x)*(1 - 10*x)). (End)
E.g.f.: 5*exp(x)*(exp(9*x) - 1). - Elmo R. Oliveira, Sep 12 2024
Extensions
Name edited by Jinyuan Wang, Aug 04 2021
Comments