cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086577 a(n) = 6*(10^n - 1).

Original entry on oeis.org

0, 54, 594, 5994, 59994, 599994, 5999994, 59999994, 599999994, 5999999994, 59999999994, 599999999994, 5999999999994, 59999999999994, 599999999999994, 5999999999999994, 59999999999999994, 599999999999999994, 5999999999999999994, 59999999999999999994, 599999999999999999994
Offset: 0

Views

Author

Ray Chandler, Jul 22 2003

Keywords

Comments

Original definition: a(n) = k where R(k+6) = 6.

Crossrefs

Cf. A002275, A004086 (R(n)).
One of a family of sequences of the form "Numbers k such that reverse(k+m) = m", m = 1 to 9; m=1: A002283, m=2: A086573, m=3: A086574, m=4: A086575, m=5: A086576, m=6: A086577, m=7: A086578, m=8: A086579, m=9: A086580.

Programs

  • Mathematica
    LinearRecurrence[{11,-10},{0,54},30] (* Harvey P. Dale, Nov 27 2022 *)

Formula

a(n) = 6*9*A002275(n) = 6*A002283(n).
R(a(n)) = A086576(n).
From Chai Wah Wu, Jul 08 2016: (Start)
a(n) = 11*a(n-1) - 10*a(n-2) for n > 1.
G.f.: 54*x/((1 - x)*(1 - 10*x)). (End)
E.g.f.: 6*exp(x)*(exp(9*x) - 1). - Elmo R. Oliveira, Sep 12 2024

Extensions

Name edited by Jinyuan Wang, Aug 04 2021