A086594 a(n) = 8*a(n-1) + a(n-2), starting with a(0)=2 and a(1)=8.
2, 8, 66, 536, 4354, 35368, 287298, 2333752, 18957314, 153992264, 1250895426, 10161155672, 82540140802, 670482282088, 5446398397506, 44241669462136, 359379754094594, 2919279702218888, 23713617371845698, 192628218676984472, 1564739366787721474
Offset: 0
Examples
a(4) = 8*a(3)+a(2) = 8*536+66 = 4354.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)
- Index entries for linear recurrences with constant coefficients, signature (8,1).
Crossrefs
Cf. A003285.
Programs
-
Magma
I:=[2,8]; [n le 2 select I[n] else 8*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 19 2016
-
Mathematica
LinearRecurrence[{8,1},{2,8},30] (* Harvey P. Dale, Sep 21 2014 *) RecurrenceTable[{a[0] == 2, a[1] == 8, a[n] == 8 a[n-1] + a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Sep 19 2016 *)
-
PARI
x='x+O('x^30); Vec(2*(1-4*x)/(1-8*x-x^2)) \\ G. C. Greubel, Nov 07 2018
Formula
a(n) = (4+sqrt(17))^n + (4-sqrt(17))^n.
O.g.f: 2*(-1+4*x)/(-1+8*x+x^2). - R. J. Mathar, Dec 02 2007
a(n) = 2*A088317(n). - R. J. Mathar, Sep 27 2014
Comments