cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086600 Number of primitive prime factors in the n-th Lucas number A000204(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 3, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 3, 2, 1, 1, 2, 2, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 3, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 3, 3, 1, 2, 2, 3, 2, 3, 2, 3, 3, 2
Offset: 1

Views

Author

T. D. Noe, Jul 24 2003

Keywords

Comments

A prime factor of Lucas(n) is called primitive if it does not divide Lucas(r) for any r < n. It can be shown that there is at least one primitive prime factor for n > 6. When n is prime, all the prime factors of Lucas(n) are primitive.

Examples

			a(22) = 2 because Lucas(22) = 3*43*307 and neither 43 nor 307 divide a smaller Lucas number.
		

Crossrefs

Cf. A000204 (Lucas numbers), A058036, A086598 (number of distinct prime factors), A086599 (number of prime factors, counting multiplicity), A274333.

Programs

  • Magma
    lst:=[]; pr:=1; for n in [1..105] do pd:=PrimeDivisors(Lucas(n)); d:=1; t:=0; for c in [1..#pd] do f:=pd[c]; if Gcd(pr, f) eq 1 then t+:=1; else d:=d*f; end if; end for; Append(~lst, t); pr:=pr*Truncate(Lucas(n)/d); end for; lst; // Arkadiusz Wesolowski, Jun 22 2016
  • Mathematica
    Lucas[n_] := Fibonacci[n+1] + Fibonacci[n-1]; pLst={}; Join[{0}, Table[f=Transpose[FactorInteger[Lucas[n]]][[1]]; f=Complement[f, pLst]; cnt=Length[f]; pLst=Union[pLst, f]; cnt, {n, 2, 150}]]

Formula

a(n) = Sum{d|n and n/d odd} mu(n/d) a(d) -1 if 6|n and n/6 is a power of 2.