A086600 Number of primitive prime factors in the n-th Lucas number A000204(n).
0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 3, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 3, 2, 1, 1, 2, 2, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 3, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 3, 3, 1, 2, 2, 3, 2, 3, 2, 3, 3, 2
Offset: 1
Examples
a(22) = 2 because Lucas(22) = 3*43*307 and neither 43 nor 307 divide a smaller Lucas number.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..1411 (first 1000 terms from T. D. Noe)
- Blair Kelly, Fibonacci and Lucas Factorizations,
- Eric Weisstein's World of Mathematics, Lucas Number.
Crossrefs
Programs
-
Magma
lst:=[]; pr:=1; for n in [1..105] do pd:=PrimeDivisors(Lucas(n)); d:=1; t:=0; for c in [1..#pd] do f:=pd[c]; if Gcd(pr, f) eq 1 then t+:=1; else d:=d*f; end if; end for; Append(~lst, t); pr:=pr*Truncate(Lucas(n)/d); end for; lst; // Arkadiusz Wesolowski, Jun 22 2016
-
Mathematica
Lucas[n_] := Fibonacci[n+1] + Fibonacci[n-1]; pLst={}; Join[{0}, Table[f=Transpose[FactorInteger[Lucas[n]]][[1]]; f=Complement[f, pLst]; cnt=Length[f]; pLst=Union[pLst, f]; cnt, {n, 2, 150}]]
Formula
a(n) = Sum{d|n and n/d odd} mu(n/d) a(d) -1 if 6|n and n/6 is a power of 2.
Comments