cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086601 Triangular numbers + 1 squared.

Original entry on oeis.org

1, 4, 16, 49, 121, 256, 484, 841, 1369, 2116, 3136, 4489, 6241, 8464, 11236, 14641, 18769, 23716, 29584, 36481, 44521, 53824, 64516, 76729, 90601, 106276, 123904, 143641, 165649, 190096, 217156, 247009, 279841, 315844, 355216, 398161
Offset: 0

Views

Author

Jon Perry, Jul 23 2003

Keywords

Comments

Also number of n X 2 0..1 arrays with rows and columns unimodal (cf. A223620, column 2). - Georg Fischer, Nov 03 2021

Examples

			a(5) = (t(5)+1)^2 = 16^2 = 256.
		

Crossrefs

Programs

  • Maple
    A086601 := proc(n)
        (n+2+n^2)^2 /4 ;
    end proc:
    seq(A086601(n),n=0..20) ; # R. J. Mathar, May 14 2014
  • Mathematica
    (Accumulate[Range[0,40]]+1)^2 (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,4,16,49,121},40] (* Harvey P. Dale, Jan 14 2020 *)
  • PARI
    w=vector(40,i,(t(i)+1)^2)

Formula

a(n) = (A000217(n) + 1)^2.
a(n) = (binomial(2+n,2) - binomial(n,1))^2. - Zerinvary Lajos, May 30 2006, corrected by R. J. Mathar, May 14 2014
a(n) = A000124(n)^2. - Omar E. Pol, Oct 30 2007
a(n) = 1 + A061316(n). Zerinvary Lajos, Apr 25 2008
G.f.: ( -1+x-6*x^2+x^3-x^4 ) / (x-1)^5. - R. J. Mathar, May 14 2014