A223669 T(n,k)=Number of nXk 0..1 arrays with rows, diagonals and antidiagonals unimodal.
2, 4, 4, 7, 16, 8, 11, 49, 64, 16, 16, 121, 292, 256, 32, 22, 256, 948, 1723, 1024, 64, 29, 484, 2527, 6454, 10327, 4096, 128, 37, 841, 5913, 18980, 44693, 61996, 16384, 256, 46, 1369, 12577, 49561, 136289, 321163, 371641, 65536, 512, 56, 2116, 24821, 119150
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..1..1....0..0..1..0....0..1..1..0....0..1..0..0....0..0..0..0 ..0..1..1..0....1..1..1..1....1..1..1..0....0..1..1..0....0..0..0..0 ..1..1..1..0....0..1..1..1....1..1..1..1....0..1..1..0....0..0..0..0 ..0..0..0..0....0..0..1..0....1..1..1..0....0..0..0..1....1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..179
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: a(n) = 6*a(n-1) -2*a(n-2) +11*a(n-3) +10*a(n-4) -30*a(n-5) -12*a(n-6)
k=4: [order 23]
k=5: [order 93]
Empirical for row n:
n=1: a(n) = (1/2)*n^2 + (1/2)*n + 1
n=2: a(n) = (1/4)*n^4 + (1/2)*n^3 + (5/4)*n^2 + 1*n + 1
n=3: a(n) = polynomial of degree 6 for n>1
n=4: a(n) = polynomial of degree 8 for n>6
n=5: a(n) = polynomial of degree 10 for n>12
n=6: a(n) = polynomial of degree 12 for n>20
Comments