cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A086601 Triangular numbers + 1 squared.

Original entry on oeis.org

1, 4, 16, 49, 121, 256, 484, 841, 1369, 2116, 3136, 4489, 6241, 8464, 11236, 14641, 18769, 23716, 29584, 36481, 44521, 53824, 64516, 76729, 90601, 106276, 123904, 143641, 165649, 190096, 217156, 247009, 279841, 315844, 355216, 398161
Offset: 0

Views

Author

Jon Perry, Jul 23 2003

Keywords

Comments

Also number of n X 2 0..1 arrays with rows and columns unimodal (cf. A223620, column 2). - Georg Fischer, Nov 03 2021

Examples

			a(5) = (t(5)+1)^2 = 16^2 = 256.
		

Crossrefs

Programs

  • Maple
    A086601 := proc(n)
        (n+2+n^2)^2 /4 ;
    end proc:
    seq(A086601(n),n=0..20) ; # R. J. Mathar, May 14 2014
  • Mathematica
    (Accumulate[Range[0,40]]+1)^2 (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,4,16,49,121},40] (* Harvey P. Dale, Jan 14 2020 *)
  • PARI
    w=vector(40,i,(t(i)+1)^2)

Formula

a(n) = (A000217(n) + 1)^2.
a(n) = (binomial(2+n,2) - binomial(n,1))^2. - Zerinvary Lajos, May 30 2006, corrected by R. J. Mathar, May 14 2014
a(n) = A000124(n)^2. - Omar E. Pol, Oct 30 2007
a(n) = 1 + A061316(n). Zerinvary Lajos, Apr 25 2008
G.f.: ( -1+x-6*x^2+x^3-x^4 ) / (x-1)^5. - R. J. Mathar, May 14 2014

A223615 Number of n X 3 0..1 arrays with rows and columns unimodal.

Original entry on oeis.org

7, 49, 240, 876, 2582, 6504, 14547, 29659, 56161, 100123, 169786, 276030, 432888, 658106, 973749, 1406853, 1990123, 2762677, 3770836, 5068960, 6720330, 8798076, 11386151, 14580351, 18489381, 23235967, 28958014, 35809810, 43963276, 53609262
Offset: 1

Views

Author

R. H. Hardin, Mar 24 2013

Keywords

Comments

Column 3 of A223620.

Examples

			Some solutions for n=4:
..0..0..1....0..0..1....1..0..0....0..0..1....0..1..0....0..0..0....0..1..1
..0..1..1....0..1..1....1..1..1....0..0..1....0..1..1....1..0..0....0..1..0
..1..1..1....0..0..1....1..1..0....0..1..0....0..0..1....1..0..0....0..0..0
..1..1..1....0..0..1....0..1..0....0..1..0....0..0..0....1..1..0....1..0..0
		

Crossrefs

Cf. A223620.

Formula

Empirical: a(n) = (23/360)*n^6 + (31/120)*n^5 + (8/9)*n^4 + (31/24)*n^3 + (737/360)*n^2 + (29/20)*n + 1.
Conjectures from Colin Barker, Aug 21 2018: (Start)
G.f.: x*(7 + 44*x^2 - 20*x^3 + 20*x^4 - 6*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A223616 Number of n X 4 0..1 arrays with rows and columns unimodal.

Original entry on oeis.org

11, 121, 876, 4466, 17594, 57238, 160883, 403159, 921181, 1951247, 3879910, 7312800, 13164932, 22776596, 38059285, 61676477, 97264447, 149698645, 225411536, 332768158, 482506014, 688246274, 967083623, 1340262451, 1833947441
Offset: 1

Views

Author

R. H. Hardin, Mar 24 2013

Keywords

Comments

Column 4 of A223620.

Examples

			Some solutions for n=4:
..0..0..1..0....0..0..1..1....1..0..0..0....1..0..0..0....0..0..1..0
..1..1..1..1....0..1..1..1....0..0..0..0....1..1..1..0....0..0..1..1
..1..1..1..0....0..0..1..0....0..0..1..0....0..0..0..0....0..1..1..1
..0..0..1..0....0..0..1..0....0..0..0..1....0..0..0..0....0..1..1..1
		

Crossrefs

Cf. A223620.

Formula

Empirical: a(n) = (1/112)*n^8 + (79/1260)*n^7 + (59/180)*n^6 + (299/360)*n^5 + (259/144)*n^4 + (821/360)*n^3 + (7219/2520)*n^2 + (767/420)*n + 1.
Conjectures from Colin Barker, Aug 21 2018: (Start)
G.f.: x*(11 + 22*x + 183*x^2 + 14*x^3 + 158*x^4 - 56*x^5 + 35*x^6 - 8*x^7 + x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)

A223617 Number of n X 5 0..1 arrays with rows and columns unimodal.

Original entry on oeis.org

16, 256, 2582, 17594, 89630, 367216, 1271969, 3857481, 10504174, 26169386, 60506898, 131289614, 269716032, 528358366, 992720569, 1797620937, 3149899316, 5359276060, 8879561670, 14362835354, 22729680458, 35259087700, 53702216265
Offset: 1

Views

Author

R. H. Hardin Mar 24 2013

Keywords

Comments

Column 5 of A223620.

Examples

			Some solutions for n=4
..1..1..1..1..1....1..1..1..0..0....1..1..0..0..0....0..1..1..1..1
..0..1..1..1..1....0..1..1..1..0....0..0..0..1..0....0..1..1..1..0
..0..0..0..0..0....0..0..1..1..0....0..0..0..1..1....1..1..1..0..0
..0..0..0..0..0....0..0..0..0..0....0..0..1..1..1....1..1..1..0..0
		

Crossrefs

Cf. A223620.

Formula

Empirical: a(n) = (359/453600)*n^10 + (251/30240)*n^9 + (3817/60480)*n^8 + (73/280)*n^7 + (1127/1350)*n^6 + (485/288)*n^5 + (532219/181440)*n^4 + (25699/7560)*n^3 + (30811/8400)*n^2 + (451/210)*n + 1.

A223618 Number of nX6 0..1 arrays with rows and columns unimodal.

Original entry on oeis.org

22, 484, 6504, 57238, 367216, 1856100, 7795951, 28248007, 90732638, 263650284, 703980614, 1748547620, 4079672416, 9012596316, 18975151965, 38281575869, 74344179766, 139521245076, 253869738212, 449160402594, 774624001120
Offset: 1

Views

Author

R. H. Hardin Mar 24 2013

Keywords

Comments

Column 6 of A223620

Examples

			Some solutions for n=4
..1..1..0..0..0..0....0..0..1..0..0..0....0..0..1..1..1..1....1..1..1..1..1..1
..0..1..0..0..0..0....0..0..0..1..0..0....0..0..1..1..1..1....1..1..1..1..1..1
..0..0..1..0..0..0....0..0..0..1..1..0....0..0..0..1..1..1....0..0..0..1..1..1
..0..0..1..1..0..0....1..1..0..0..0..0....0..0..0..0..1..1....0..0..0..1..1..1
		

Formula

Empirical: a(n) = (271/5443200)*n^12 + (2327/3326400)*n^11 + (39107/5443200)*n^10 + (1579/36288)*n^9 + (52553/259200)*n^8 + (192371/302400)*n^7 + (8636441/5443200)*n^6 + (56113/20160)*n^5 + (2901677/680400)*n^4 + (523927/113400)*n^3 + (23969/5400)*n^2 + (33487/13860)*n + 1

A223619 Number of nX7 0..1 arrays with rows and columns unimodal.

Original entry on oeis.org

29, 841, 14547, 160883, 1271969, 7795951, 39162020, 167679972, 629671260, 2118764468, 6495046664, 18377663488, 48503155274, 120433134332, 283334050243, 635338765283, 1364719186775, 2820129263963, 5627010952649, 10875524219289
Offset: 1

Views

Author

R. H. Hardin Mar 24 2013

Keywords

Comments

Column 7 of A223620

Examples

			Some solutions for n=4
..0..0..0..0..0..0..0....0..0..0..0..0..1..1....0..0..0..0..0..0..0
..0..0..0..1..1..1..0....0..0..1..1..1..1..1....0..0..1..1..1..1..1
..1..0..0..0..0..0..0....0..1..1..1..1..0..0....1..1..1..1..1..1..1
..0..1..0..0..0..0..0....0..1..1..1..1..0..0....0..0..1..1..1..1..0
		

Formula

Empirical: a(n) = (503/209563200)*n^14 + (6527/155675520)*n^13 + (17/31185)*n^12 + (37901/8553600)*n^11 + (76799/2721600)*n^10 + (46471/362880)*n^9 + (3497567/7620480)*n^8 + (936493/777600)*n^7 + (467419/181440)*n^6 + (320807/77760)*n^5 + (69073271/11975040)*n^4 + (29326111/4989600)*n^3 + (60167903/11642400)*n^2 + (191717/72072)*n + 1

A223614 Number of n X n 0..1 arrays with rows and columns unimodal.

Original entry on oeis.org

2, 16, 240, 4466, 89630, 1856100, 39162020, 840122330, 18350758538, 409124396540, 9333564282142, 218396645933584, 5252293916506694
Offset: 1

Views

Author

R. H. Hardin Mar 24 2013

Keywords

Comments

Diagonal of A223620

Examples

			Some solutions for n=4
..1..1..0..0....0..1..0..0....0..0..0..0....1..0..0..0....0..1..1..0
..1..1..0..0....1..1..0..0....0..1..0..0....1..1..0..0....0..1..1..0
..1..1..0..0....0..1..0..0....0..1..1..0....1..1..1..1....0..1..1..0
..0..0..0..1....0..0..1..1....0..1..1..0....1..1..1..0....0..1..1..1
		
Showing 1-7 of 7 results.