cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A159571 Fifth diagonal in Table A159572; previous diagonals are A000012, A000217, A000330 and A086602.

Original entry on oeis.org

6, 39, 138, 364, 804
Offset: 1

Views

Author

Alford Arnold, Apr 15 2009

Keywords

Comments

The sequence can be generated by adding the below four sequences term by term:
1...5..14...30...55..
3..18..60..150..315..
1...7..25...65..140..
1...9..39..119..294..

A089574 Column 4 of an array closely related to A083480. (Both arrays have shape sequence A083479).

Original entry on oeis.org

5, 32, 113, 299, 664, 1309, 2366, 4002, 6423, 9878, 14663, 21125, 29666, 40747, 54892, 72692, 94809, 121980, 155021, 194831, 242396, 298793, 365194, 442870, 533195, 637650, 757827, 895433, 1052294, 1230359, 1431704, 1658536, 1913197
Offset: 1

Views

Author

Alford Arnold, Dec 29 2003; extended May 04 2005

Keywords

Comments

The diagonals are finite and sum to A047970.
Values appear to be a transformation of A006468 (rooted planar maps). Also known as well-labeled trees (cf. A000168).
First differences of the conjectured polynomial formula for A006468. [From R. J. Mathar, Jun 26 2010]

Examples

			The array begins
1
2
4
7 1
11 5
16 14 2
22 30 12
29 55 39 5
37 91 95 32 1
		

Crossrefs

Cf. A000124 (column 1), A000330 (column 2), A086602 (column 3), A107600 (column 5), A107601 (column 6), A109125 (column 7), A109126 (column 8), A109820 (column 9), A108538 (column 10), A109821 (column 11), A110553 (column 12), A110624 (column 13).

Formula

Row sums are powers of 2.
a(n) = A000330(n) + A006011(n+1) + A034263(n-1).
a(n)= +6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6). G.f.: x*(5+2*x-4*x^2+x^3)/(x-1)^6. a(n) = n*(n+1)*(4*n^3+51*n^2+159*n+86)/120. [From R. J. Mathar, Jun 26 2010]

Extensions

Extended beyond a(8) by R. J. Mathar, Jun 26 2010

A109125 Column 7 of array illustrated in A089574 and related to A034261.

Original entry on oeis.org

2, 41, 292, 1283, 4253, 11712, 28261, 61738, 124763, 236762, 426557, 735616, 1222064, 1965563, 3073176, 4686337, 6989056, 10217495, 14671058, 20725145, 28845727, 39605906, 53704631, 71987748, 95471569, 125369152, 163119491
Offset: 0

Views

Author

Alford Arnold, Jun 19 2005

Keywords

Examples

			a(1) = 2 because 4+4+4 and 3+3+3+3 cannot be permuted. a(2) = 41 because there are 3 + 7 + 12 + 9 + 10 ways of permuting the associated partitions.
5553 (3 ways), 4441 & 544 (4+3 ways), 4432 (12 ways), 33331 & 4333 (5 + 4 ways) and 33322 (in 10 ways).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{2,41,292,1283,4253,11712,28261,61738,124763},30] (* Harvey P. Dale, Aug 21 2024 *)

Formula

From R. J. Mathar, Jun 26 2010: (Start)
a(n) = A105552(11+n,5+n).
G.f.: x*(-2-23*x+5*x^2+37*x^3-26*x^4-9*x^5+17*x^6-7*x^7+x^8)/(x-1)^9. a(n) = -1+1277*n/840 -19*n^3/480 -67*n^2/480 +41*n^5/80 +257*n^6/2800 +23*n^7/3360 +6049*n^4/5760 +n^8/5760. (End)

Extensions

Extended beyond a(6) by R. J. Mathar, Jun 26 2010

A108538 Column 10 of array illustrated in A089574 and related to A034261.

Original entry on oeis.org

1, 64, 731, 4553, 20155, 71272, 214653, 572743, 1389702, 3122752, 6585183, 13162741, 25131718, 46115029, 81722067, 140429357, 234772177, 382932581, 610826859, 954815625, 1465182669, 2210554686, 3283463257, 4807283267, 6944818576, 9908846494, 13974977743, 19497238421, 26926835328
Offset: 0

Views

Author

Alford Arnold, Jul 05 2005

Keywords

Comments

A109820 can be decomposed into 30 sequences. These 30 associated sequences can be inferred from the 30 ways of partitioning the number nine: 9 81 72 63 54 ... the complete listing is available in the Handbook of Mathematical Functions (1964) p. 831. Consider, for example, the three ways of partitioning the number three: 3, 21 and 111; prepend each partition then add one to each value - yielding 44, 332 and 2222. These "associated" partitions are then used to derive the associated sequences. 44 => A000330, 332 => A006011 and 2222 => A034263. Summing these three sequences yields A089574.

Examples

			a(1) = 1 because the only associated partition 4444 for n = 16 cannot be permuted.
a(2) = 64 because the associated partitions can be permuted in 3 + 4 + 12 + 9 + 20 + 10 + 6 ways when n = 17.
		

Crossrefs

Cf. A000330 (column 2), A086602 (column 3), A089574 (column 4), A107600 (column 5), A107601 (column 6), A109125 (column 7), A109126 (column 8), A109820 (column 9), A108538 (column 10), A109821 (column 11), A110553 (column 12), A110624 (column 13)

Formula

G.f. 1+64*x -x^2*(-731 +4219*x -13765*x^2 +30910*x^3 -49804*x^4 +58458*x^5 -50237*x^6 +31394*x^7 -13931*x^8 +4171*x^9 -757*x^10 +63*x^11)/(x-1)^12 . - R. J. Mathar, Aug 28 2018

Extensions

Extended by R. J. Mathar, Aug 28 2018

A109820 Column 9 of array illustrated in A089574 and related to A034261.

Original entry on oeis.org

6, 126, 992, 4921, 18450, 57198, 154420, 375106, 838075, 1749221, 3449895, 6485363, 11699374, 20362113, 34340211, 56319046, 90089305, 140911696, 215975810, 324971445, 480793226, 700402096, 1005870222, 1425639066, 1996023823, 2763001135, 3784320961, 5131987727, 6895160406, 9183525995, 12131205973
Offset: 0

Views

Author

Alford Arnold, Jul 03 2005

Keywords

Examples

			The associated sequences begin for n = 15 through 19:
........................1.......5
........................3.......18
................3.......18......60
........3.......18......60......150
1.......7.......25......65......140
........................6.......42
................12......84......324
........12......84......324.....924
........6.......42......162.....462
4.......32......132.....392.....952
........................10......80
................30......240.....1050
........10......90......420.....1400
........30......240.....1050....3360
1.......11......56......196.....546
........................15......135
................60......540.....2640
........15......165.....900.....3420
........................21......210
................35......385.....2205
........................28......308
........................1.......19
therefore this sequence begins
6 126 992 4921 18450
		

Crossrefs

Cf. A109126.
Cf. A000330 (column 2), A086602 (column 3), A089574 (column 4), A107600 (column 5), A107601 (column 6), A109125 (column 7), A109126 (column 8), A109820 (column 9), A108538 (column 10), A109821 (column 11), A110553 (column 12), A110624 (column 13).

Formula

G.f. 6 -x*( 126 -394*x +939*x^2 -1911*x^3 +2803*x^4 -2825*x^5 +1964*x^6 -939*x^7 +298*x^8 -57*x^9 +5*x^10)/(x-1)^11 . - R. J. Mathar, Aug 28 2018

Extensions

More terms with the program of A105552 from R. J. Mathar, Aug 28 2018

A109821 Column 11 of array illustrated in A089574 and related to A034261.

Original entry on oeis.org

27, 482, 3855, 20329, 82346, 277295, 813738, 2145712, 5192450, 11708366, 24881487, 50269005, 97217758, 180966915, 325691821, 568823951, 967074547, 1604701323, 2604691419, 4143692621, 6471712062, 9937820779, 15023357512, 22384420182, 32905773076, 47768686720
Offset: 0

Views

Author

Alford Arnold, Jul 18 2005

Keywords

Examples

			An examination of the relevant ordered Gaussian polynomials reveals the following distribution (beginning with partitions of length three):
1 10 15 1
6 52 180 216 28
12 114 530 1386 1547 266
18 168 880 3086 7007 7616 1554
therefore (by summing each row) this sequence begins
27
482
3855
20329
		

Crossrefs

Cf. A000330 (column 2), A086602 (column 3), A089574 (column 4), A107600 (column 5), A107601 (column 6), A109125 (column 7), A109126 (column 8), A109820 (column 9), A108538 (column 10), A109821 (column 11), A110553 (column 12), A110624 (column 13).

Programs

  • Mathematica
    LinearRecurrence[{13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1}, {27,482, 3855,20329,82346,277295,813738,2145712,5192450,11708366,24881487, 50269005, 97217758,180966915,325691821}, 1001] (* Georg Fischer, Feb 28 2019 *)

Formula

G.f.: 27 + 482*x -x^2*(3855 -29786*x +118759*x^2 -310071*x^3 +574122*x^4 -780978*x^5 +792535*x^6 -601009*x^7 +336759*x^8 -135622*x^9 +37194*x^10 -6228*x^11 +481*x^12) /(x-1)^13. - R. J. Mathar, Aug 28 2018

Extensions

More terms from R. J. Mathar, Aug 28 2018

A110553 Column 12 of an array illustrated in A089584 and related to A034261.

Original entry on oeis.org

9, 284, 3004, 19078, 88938, 335612, 1084387, 3109060, 8104089, 19539904, 44141520, 94346102, 192252586, 375787005, 708083995, 1291443529, 2287680232, 3947261426, 6650353141, 10963787826, 17719064134, 28117822582, 43872849975, 67394593662, 102035462287, 152406906280
Offset: 0

Views

Author

Alford Arnold, Jul 29 2005

Keywords

Comments

The column sequences can also be calculated using sequences which map to associated partitions. For example, 4 32 132 392 ... maps to 5+5+5+4 (n=19) and sequence 5 50 245 840 ... maps to 4+4+4+4+3. Many partitions map to the same sequences since the mapping depends only on the "degree" of the partition. In the above two cases, the degrees are 31 and 41 respectively. At n = 20 the relevant degrees are: 21,31,211,311,22,221,42,212,321,24 and 61. The associated partitions can be permuted with the number of ways as indicated: 3 4 12 20 6 30 15 30 60 15 and 7 ways. Adding these values with the 32 and 50 ways from our first two sequences confirms that A110553(2) = 284.

Examples

			An examination of the relevant ordered Gaussian polynomials reveals the following distributions:
5 4
7 120 120 34 3
112 1127 1190 470 96 9
882 6692 7147 3270 910 162 15
therefore the sequence begins
9
284
3004
19078
...
		

Crossrefs

Cf. A000330 (column 2), A086602 (column 3), A089574 (column 4), A107600 (column 5), A107601 (column 6), A109125 (column 7), A109126 (column 8), A109820 (column 9), A108538 (column 10), A109821 (column 11), A110553 (column 12), A110624 (column 13).

Programs

  • Mathematica
    LinearRecurrence[{14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1}, {9, 284, 3004,19078, 88938, 335612, 1084387, 3109060, 8104089,19539904, 44141520, 94346102, 192252586, 375787005, 708083995, 1291443529, 2287680232}, 1001] (* Georg Fischer, Feb 28 2019 *)

Formula

G.f.: 9+284*x+3004*x^2 -x^3*(-19078 +178154*x -826578*x^2 +2465215*x^3 -5191980*x^4 +8073520*x^5 -9475220*x^6 +8461596*x^7 -5732830*x^8 +2904174*x^9 -1067563*x^10 +269335*x^11 -41760*x^12 +3003*x^13) /(x-1)^14. - R. J. Mathar, Aug 28 2018

Extensions

More terms from R. J. Mathar, Aug 28 2018

A110624 Column 13 of array illustrated in A089574 and related to A034261.

Original entry on oeis.org

2, 148, 2159, 16746, 90371, 383147, 1364679, 4256436, 11952264, 30812675, 73980045, 167235586, 358959637, 736521122, 1452480779, 2765433413, 5102243735, 9150977405, 15997148389, 27320179543, 45672422411, 74869958841, 120533007335, 190824424010, 297447916702, 456983633899, 692658264469, 1036670276472, 1533219097805
Offset: 1

Views

Author

Alford Arnold, Aug 26 2005

Keywords

Comments

The 77 applicable partitions range from n = 20 through n=26 with the following frequency distribution: 2, 9, 16, 15, 14, 9 and 12.

Examples

			A110624(1) = 2 because the two relevant partitions of 20 are 4+4+4+4+4 and 5+5+5+5 and cannot be permuted.
A110624(2) = 148 because at n = 21 the relevant partitions can be permuted in 20 plus 128 = 148 ways.
The 20 ways are apparent from A034261 by observing that 9 + 11 = 20 in the subsequences 1,9,39,... and 1,11,56,...
and the 128 ways result from examining the nine partitions of n = 21 having 3,31,32,33,7,211,221,311 and 411 degrees.
A110624(4)= A110554(13) = 16746.
		

Crossrefs

Cf. A000330 (column 2), A086602 (column 3), A089574 (column 4), A107600 (column 5), A107601 (column 6), A109125 (column 7), A109126 (column 8), A109820 (column 9), A108538 (column 10), A109821 (column 11), A110553 (column 12), A110624 (column 13)

Extensions

More terms from R. J. Mathar, Aug 28 2018

A105552 Irregular triangle T(n,k) read down columns: the number of compositions c of n with largest_part(c)+length(c)=k+1 in row n, column k.

Original entry on oeis.org

1, 2, 4, 1, 7, 5, 2, 11, 14, 12, 5, 1, 16, 30, 39, 32, 18, 7, 2, 22, 55, 95, 113, 101, 71, 41, 18, 6, 1, 29, 91, 195, 299, 357, 350, 292, 207, 126, 64, 27, 9, 2, 37, 140, 357, 664, 978, 1204, 1283, 1198, 992, 731, 482, 284, 148, 66, 25, 7, 1, 46, 204, 602, 1309, 2274, 3329, 4253
Offset: 1

Views

Author

Alford Arnold, May 03 2005

Keywords

Comments

For each of the A000041(n) partitions of n, one can assign a weight to the partition which counts the permutations of that partition, given by the multinomial coefficient derived from the frequency representation of the parts.
An equivalent representation is given by writing down all compositions of n.
The entries count those partitions multiplied by their weights (=compositions) of n where the sum of the largest addend plus number of parts equals k+1. Only nonzero counts are entered into the sequence.
Each entry can also be interpreted as counting a subset of numbers in A055932, because there is a 1-to-1 correspondence between their prime signature and ordered partitions.
Each diagonal of T(n,k) can be decomposed into p(n) sequences. For example,
A086602 = 2 12 39 95 195 ... is the sum of
A000330 = 1 5 14 30 55 ... plus
A001296 = 1 7 25 65 140 ...
The main diagonal and subdiagonals in order of appearance are A000124, A000330, A086602, A089574, A107600, A107601, A109125, ...

Examples

			The row n=7 starts from the partitions (weights in parentheses) 7 (1), 6+1 (2), 5+2 (2), 4+3 (2), 5+1+1 (3), 4+2+1 (6=3!/1!/1!/1!), 3+3+1 (3), 3+2+2 (3), 4+1+1+1 (4=4!/1!/3!), 3+2+1+1 (12 = 4!/1!/1!/2!), 2+2+2+1 (4), 3+1+1+1+1+1 (5), 2+2+1+1+1 (10=5!/2!/3!), 2+1+1+1+1 (6), 1+1+1+1+1+1 (1).
Then T(7,7) = 1+2+3+4+5+6+1 = 22 is the sum of the weights of partitions with largest part 7 and length 1, largest part 6 and length 2,... largest part 1 and length 7.
T(7,6) = 2+6+12+10 = 30 is the sum of the weights of the partitions with largest part 6 and length 1, largest part 5 and length 2, ..., largest part 1 and length 6.
T(7,5) = 2+3+3+4 = 12 collects all the partitions with largest part 5 and length 1 down to largest part 1 and length 5.
The array has A033638(k) nonzero entries per column, starting at n=1 as :
1
..2
....4
....1..7
.......5..11
.......2..14..16
..........12..30..22
...........5..39..55..29
...........1..32..95..91..37
..............18.113.195.140
...............7.101.299.357
...............2
		

Crossrefs

Cf. A047969, A047970, A055932, A057335, A083480, A083906, A089349, A033638, A086602 (subdiagonal), A089574 (subdiagonal).

Programs

  • Maple
    A033638 := proc(n) ( (7+(-1)^n)/2 + n^2 )/4 ; end proc:
    freq := proc(L,n) local a,p; a := 0 ; for p in L do if p = n then a := a+1 ; end if; end do: a ; end proc:
    M3 := proc(L) local a,i; a := factorial(nops(L)) ; for i in convert(L,set) do a := a/factorial(freq(L,i)) ; end do: a ; end proc:
    A105552 := proc(n,k) local p,a,l ; a := 0 ; for p in combinat[partition](n) do if max(op(p)) + nops(p) = k+1 then a := a+ M3(p); end if; end do ; a ; end proc:
    for k from 1 to 15 do for n from k to k+A033638(k)+1 do T := A105552(n,k) ; if T >0 then printf("%d,", A105552(n,k)) ; end if; end do: printf("\n") ; end do: # R. J. Mathar, Jun 26 2010
    # second Maple program:
    b:= proc(n, k, p) option remember; `if`(n=0 and k=0, 1,
         `if`(k<1, 0, add(b(n-j, k-1-max(p, j)+p, max(p, j)), j=1..n)))
        end:
    T:= k-> seq(b(n, k+1, 0), n=k..k+floor((k-1)^2/4)):
    seq(T(k), k=1..10);  # Alois P. Heinz, Jul 24 2013
  • Mathematica
    b[n_, k_, p_] := b[n, k, p] = If[n == 0 && k == 0, 1, If[k < 1, 0, Sum[b[n - j, k - 1 - Max[p, j] + p, Max[p, j]], {j, 1, n}]]]; T[k_] := Table[b[n, k + 1, 0], {n, k, k + Floor[(k - 1)^2/4]}]; Table[T[k], {k, 1, 10}] // Flatten (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)

Formula

Row sums: Sum_{k=0..n} T(n,k) = 2^(n-1).
Column sums: Sum_{n>=k} T(n,k) = A047970(n).

Extensions

Definition clarified by R. J. Mathar, Jun 26 2010

A109126 Column 8 of array illustrated in A089574 and related to A034261.

Original entry on oeis.org

18, 207, 1198, 4825, 15448, 42168, 102297, 226530, 466357, 904352, 1668083, 2948502, 5023797, 8289819, 13298336, 20804513, 31825172, 47709549, 70224436, 101655775, 144928958, 203750282, 282772211, 387785308, 525939919, 706000918, 938639057, 1236762708, 1615894035, 2094593893
Offset: 0

Views

Author

Alford Arnold, Jun 22 2005

Keywords

Examples

			The associated partitions begin (for n = 14, 15, 16, ...
................1.......5.......14
................3.......18......60
........3.......18......60......150
3.......18......60......150.....315
................6.......42......162
........12......84......324.....924
4.......32......132.....392.....952
6.......42......162.....462.....1092
................10......80......350
........30......240.....1050....3360
5.......50......245.....840.....2310
................15......135.....660
........20......200.....1040....3840
................21......210.....1134
................1.......17......125
therefore this sequence begins
18 207 1198 4825 15448 ...
		

Crossrefs

Cf. A105552, A000330 (column 2), A086602 (column 3), A089574 (column 4), A107600 (column 5), A107601 (column 6), A109125 (column 7), A109820 (column 9), A108538 (column 10), A109821 (column 11), A110553 (column 12), A110624 (column 13).

Formula

G.f. ( 18+27*x -62*x^2 +48*x^4 -13*x^5 -27*x^6 +24*x^7 -8*x^8 +x^9 ) / (x-1)^10 . - R. J. Mathar, Aug 28 2018

Extensions

More terms with the program of A105552 from R. J. Mathar, Aug 28 2018
Showing 1-10 of 13 results. Next