cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A086605 a(n) = 9*n^3 - 18*n^2 + 10*n.

Original entry on oeis.org

0, 1, 20, 111, 328, 725, 1356, 2275, 3536, 5193, 7300, 9911, 13080, 16861, 21308, 26475, 32416, 39185, 46836, 55423, 65000, 75621, 87340, 100211, 114288, 129625, 146276, 164295, 183736, 204653, 227100, 251131, 276800, 304161, 333268, 364175
Offset: 0

Views

Author

Paul Barry, Jul 23 2003

Keywords

Comments

Binomial transform is A086604.
Second binomial transform is 3^(n-1)*n^3 = A086603(n).

Crossrefs

Programs

  • GAP
    List([0..40], n-> n*(1 + 9*(n-1)^2) ); # G. C. Greubel, Feb 08 2020
  • Magma
    [9*n^3 - 18*n^2 + 10*n: n in [0..40]]; // G. C. Greubel, Feb 08 2020
    
  • Maple
    seq( 9*n^3 - 18*n^2 + 10*n, n=0..40); # G. C. Greubel, Feb 08 2020
  • Mathematica
    Table[9n^3-18n^2+10n,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,1,20,111},40] (* Harvey P. Dale, Mar 05 2013 *)
  • PARI
    vector(41, n, my(m=n-1); 9*m^3 - 18*m^2 + 10*m) \\ G. C. Greubel, Feb 08 2020
    
  • Sage
    [9*n^3 - 18*n^2 + 10*n for n in (0..40)] # G. C. Greubel, Feb 08 2020
    

Formula

G.f.: x*(1 + 16*x + 37*x^2)/(1-x)^4.
a(0)=0, a(1)=1, a(2)=20, a(3)=111, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Mar 05 2013
E.g.f.: x*(1 + 9*x + 9*x^2)*exp(x). - G. C. Greubel, Feb 08 2020

A086604 2^(n-3)n(9n^2-9n+4).

Original entry on oeis.org

0, 1, 22, 174, 896, 3680, 13152, 42784, 130048, 375552, 1041920, 2799104, 7323648, 18743296, 47079424, 116367360, 283639808, 682950656, 1626734592, 3837657088, 8975810560, 20831010816, 48005906432, 109926416384, 250248953856
Offset: 0

Views

Author

Paul Barry, Jul 23 2003

Keywords

Programs

  • Mathematica
    LinearRecurrence[{8,-24,32,-16},{0,1,22,174},30] (* Harvey P. Dale, May 08 2017 *)

Formula

Inverse binomial transform of A086603. Binomial transform of A086605.
G.f.: x*(1+14*x+22*x^2) / (2*x-1)^4 . - R. J. Mathar, Nov 27 2014
Showing 1-2 of 2 results.