cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A086603 a(n) = n^3*3^(n-1).

Original entry on oeis.org

0, 1, 24, 243, 1728, 10125, 52488, 250047, 1119744, 4782969, 19683000, 78594219, 306110016, 1167575877, 4374822312, 16142520375, 58773123072, 211488540273, 753145430616, 2657317134051, 9298091736000, 32291110337661
Offset: 0

Views

Author

Paul Barry, Jul 23 2003

Keywords

Comments

Binomial transform of A086604. Second binomial transform of A086605.

Crossrefs

Programs

  • GAP
    List([0..30], n-> 3^(n-1)*n^3 ); # G. C. Greubel, Feb 08 2020
  • Magma
    [3^(n-1)*n^3: n in [0..30]]; // G. C. Greubel, Feb 08 2020
    
  • Maple
    seq( 3^(n-1)*n^3, n=0..30); # G. C. Greubel, Feb 08 2020
  • Mathematica
    Table[n^3 3^(n-1),{n,0,30}]  (* Harvey P. Dale, Mar 12 2011 *)
  • PARI
    vector(31, n, my(m=n-1); 3^(m-1)*m^3) \\ G. C. Greubel, Feb 08 2020
    
  • Sage
    [3^(n-1)*n^3 for n in (0..30)] # G. C. Greubel, Feb 08 2020
    

Formula

From G. C. Greubel, Feb 08 2020: (Start)
G.f.: x*(1 + 12*x + 9*x^2)/(1-3*x)^4.
E.g.f.: x*(1 + 9*x + 9*x^2)*exp(x). (End)

A086605 a(n) = 9*n^3 - 18*n^2 + 10*n.

Original entry on oeis.org

0, 1, 20, 111, 328, 725, 1356, 2275, 3536, 5193, 7300, 9911, 13080, 16861, 21308, 26475, 32416, 39185, 46836, 55423, 65000, 75621, 87340, 100211, 114288, 129625, 146276, 164295, 183736, 204653, 227100, 251131, 276800, 304161, 333268, 364175
Offset: 0

Views

Author

Paul Barry, Jul 23 2003

Keywords

Comments

Binomial transform is A086604.
Second binomial transform is 3^(n-1)*n^3 = A086603(n).

Crossrefs

Programs

  • GAP
    List([0..40], n-> n*(1 + 9*(n-1)^2) ); # G. C. Greubel, Feb 08 2020
  • Magma
    [9*n^3 - 18*n^2 + 10*n: n in [0..40]]; // G. C. Greubel, Feb 08 2020
    
  • Maple
    seq( 9*n^3 - 18*n^2 + 10*n, n=0..40); # G. C. Greubel, Feb 08 2020
  • Mathematica
    Table[9n^3-18n^2+10n,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,1,20,111},40] (* Harvey P. Dale, Mar 05 2013 *)
  • PARI
    vector(41, n, my(m=n-1); 9*m^3 - 18*m^2 + 10*m) \\ G. C. Greubel, Feb 08 2020
    
  • Sage
    [9*n^3 - 18*n^2 + 10*n for n in (0..40)] # G. C. Greubel, Feb 08 2020
    

Formula

G.f.: x*(1 + 16*x + 37*x^2)/(1-x)^4.
a(0)=0, a(1)=1, a(2)=20, a(3)=111, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Mar 05 2013
E.g.f.: x*(1 + 9*x + 9*x^2)*exp(x). - G. C. Greubel, Feb 08 2020
Showing 1-2 of 2 results.