cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086616 Partial sums of the large Schroeder numbers (A006318).

Original entry on oeis.org

1, 3, 9, 31, 121, 515, 2321, 10879, 52465, 258563, 1296281, 6589727, 33887465, 175966211, 921353249, 4858956287, 25786112993, 137604139011, 737922992937, 3974647310111, 21493266631001, 116642921832963, 635074797251889, 3467998148181631, 18989465797056721, 104239408386028035
Offset: 0

Views

Author

Paul D. Hanna, Jul 24 2003

Keywords

Comments

Row sums of triangle A086614. - Paul D. Hanna, Jul 24 2003
Hankel transform is A136577(n+1). - Paul Barry, Jun 03 2009

Examples

			a(1) = 2 + 1 = 3;
a(2) = 3 + 4 + 2 = 9;
a(3) = 4 + 10 + 12 + 5 = 31;
a(4) = 5 + 20 + 42 + 40 + 14 = 121.
		

Crossrefs

Cf. A086614 (triangle), A086615 (antidiagonal sums).
Cf. A006318.

Programs

  • Mathematica
    Table[SeriesCoefficient[(1-x-Sqrt[1-6*x+x^2])/(2*x*(1-x)),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
  • PARI
    x='x+O('x^66); Vec((1-x-sqrt(1-6*x+x^2))/(2*x*(1-x))) \\ Joerg Arndt, May 10 2013
  • Sage
    # Generalized algorithm of L. Seidel
    def A086616_list(n) :
        D = [0]*(n+2); D[1] = 1
        b = True; h = 2; R = []
        for i in range(2*n) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
            else :
                for k in range(1,h, 1) : D[k] += D[k-1]
                R.append(D[h-1]); h += 1;
            b = not b
        return R
    A086616_list(23) # Peter Luschny, Jun 02 2012
    

Formula

G.f.: A(x) = 1/(1 - x)^2 + x*A(x)^2.
a(1) = 1 and a(n) = n + Sum_{i=1..n-1} a(i)*a(n-i) for n >= 2. - Benoit Cloitre, Mar 16 2004
G.f.: (1 - x - sqrt(1 - 6*x + x^2))/(2*x*(1 - x)). Cf. A001003. - Ralf Stephan, Mar 23 2004
a(n) = Sum_{k=0..n} C(n+k+1, 2*k+1) * A000108(k). - Paul Barry, Jun 03 2009
Recurrence: (n+1)*a(n) = (7*n-2)*a(n-1) - (7*n-5)*a(n-2) + (n-2)*a(n-3). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ sqrt(24 + 17*sqrt(2))*(3 + 2*sqrt(2))^n/(4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
A(x) = 1/(1 - x)^2 * c(x/(1-x^2)), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. - Peter Bala, Aug 29 2024

Extensions

Name changed using a comment of Emeric Deutsch from Dec 20 2004. - Peter Luschny, Jun 03 2012