cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086625 Antidiagonal sums of square table A086623.

Original entry on oeis.org

1, 2, 3, 6, 12, 26, 59, 138, 332, 814, 2028, 5118, 13054, 33598, 87143, 227542, 597640, 1577866, 4185108, 11146570, 29798682, 79932298, 215072896, 580327122, 1569942098, 4257254850, 11569980794, 31508150890, 85968266198, 234975421554
Offset: 0

Views

Author

Paul D. Hanna, Jul 24 2003

Keywords

Comments

a(n) is the number of Dyck (n+1)-paths (A000108) containing no DUDD and no UUPDD where P is a nonempty Dyck subpath. Example: a(2)=3 counts UUDDUD, UDUUDD, UDUDUD but omits UUUDDD because it contains an offending UUPDD and omits UUDUDD because it contains a DUDD. - David Callan, Oct 26 2006

Crossrefs

Cf. A086623 (table), A086624 (diagonal).

Programs

  • Mathematica
    CoefficientList[Series[(-1+x+Sqrt[1+x*(-2-3*x+4*x^3)])/(2*(-1+x)*x^2),{x,0,20}],x] (* Vaclav Kotesovec, Mar 22 2014 *)

Formula

G.f.: A(x) = (1-x^2)/(1-x)^2 + x^2*A(x)^2.
a(n) ~ sqrt(11*r-3) / (4*sqrt(2*Pi)*(1-r)*n^(3/2)*r^(n+5/2)), where r = 0.3478103847799310287... is the root of the equation 4*r^3+4*r^2+r = 1. - Vaclav Kotesovec, Mar 22 2014
D-finite with recurrence (n+2)*a(n) +2*(-n-1)*a(n-1) +(-3*n+4)*a(n-2) +4*a(n-3) +4*(n-3)*a(n-4)=0. - R. J. Mathar, Sep 29 2020