A127379
Signature-permutation of Callan's 2006 bijection on Dyck Paths, mirrored version (A057164-conjugate).
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 11, 13, 12, 14, 15, 19, 22, 21, 16, 20, 17, 18, 23, 24, 25, 27, 26, 28, 29, 33, 36, 35, 30, 34, 31, 32, 37, 38, 39, 41, 40, 51, 52, 60, 64, 63, 56, 62, 58, 59, 42, 43, 53, 54, 55, 44, 61, 45, 46, 47, 57, 48, 50, 49, 65, 66, 67, 69, 68, 70, 71
Offset: 0
Inverse:
A127380. a(n) =
A057164(
A127381(
A057164(n))). The number of cycles and the number of fixed points in range [
A014137(n-1)..
A014138(n-1)] of this permutation are given by
A127384 and
A086625 shifted once right. The maximum cycles and LCM's of cycle sizes begin as 1, 1, 1, 2, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, ...
A127302(a(n)) =
A127302(n) holds for all n.
A127388 shows a variant which is an involution.
A127388
Signature-permutation of a Catalan automorphism, a self-inverse variant of A127379.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 11, 13, 12, 14, 15, 19, 22, 21, 16, 20, 18, 17, 23, 24, 25, 27, 26, 28, 29, 33, 36, 35, 30, 34, 32, 31, 37, 38, 39, 41, 40, 51, 52, 60, 64, 63, 56, 62, 59, 58, 42, 43, 53, 54, 55, 47, 61, 50, 49, 44, 57, 48, 46, 45, 65, 66, 67, 69, 68, 70, 71
Offset: 0
Original entry on oeis.org
1, 1, 0, 1, 2, 4, 10, 23, 56, 138, 344, 870, 2220, 5716, 14828, 38717, 101682, 268416, 711810, 1895432, 5066030, 13586082, 36547534, 98593064, 266661162, 722953814, 1964358938, 5348367006, 14589803090, 39870312218, 109136843138
Offset: 0
This is INVERTi transform of
A086625 (appropriately shifted). I.e. INVERT([1, 1, 0, 1, 2, 4, 10, 23, 56, 138, 344, 870, 2220, 5716]) gives: 1, 2, 3, 6, 12, 26, 59, 138, 332, 814, 2028, 5118, ... (beginning of
A086625)
Generating function, PARI-program and most of the terms supplied by
Paul D. Hanna, Jan 15 2007
A127381
Signature-permutation of Callan's 2006 bijection on Dyck Paths.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 11, 13, 12, 14, 15, 19, 22, 18, 16, 21, 17, 20, 23, 24, 25, 27, 26, 28, 29, 33, 36, 32, 30, 35, 31, 34, 37, 38, 39, 41, 40, 51, 52, 60, 64, 46, 47, 59, 50, 49, 42, 43, 56, 63, 55, 44, 58, 45, 48, 53, 62, 54, 61, 57, 65, 66, 67, 69, 68, 70, 71
Offset: 0
Inverse:
A127382. a(n) =
A057164(
A127379(
A057164(n))). The number of cycles and the number of fixed points in range [
A014137(n-1)..
A014138(n-1)] of this permutation are given by
A127384 and
A086625 shifted once right. The maximum cycles and LCM's of cycle sizes begin as 1, 1, 1, 2, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, ...
A086623
Symmetric square table of coefficients, read by antidiagonals, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies f(x,y) = (1-xy)/[(1-x)(1-y)] + xy*f(x,y)^2.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 4, 3, 1, 1, 4, 8, 8, 4, 1, 1, 5, 14, 19, 14, 5, 1, 1, 6, 22, 40, 40, 22, 6, 1, 1, 7, 32, 76, 100, 76, 32, 7, 1, 1, 8, 44, 132, 222, 222, 132, 44, 8, 1, 1, 9, 58, 213, 448, 570, 448, 213, 58, 9, 1, 1, 10, 74, 324, 834, 1316, 1316, 834, 324, 74, 10, 1, 1
Offset: 0
Rows begin:
1,1,_1,__1,___1,___1,____1,____1,_____1, ...
1,1,_2,__3,___4,___5,____6,____7,_____8, ...
1,2,_4,__8,__14,__22,___32,___44,____58, ...
1,3,_8,_19,__40,__76,__132,__213,___324, ...
1,4,14,_40,_100,_222,__448,__834,__1450, ...
1,5,22,_76,_222,_570,_1316,_2782,__5458, ...
1,6,32,132,_448,1316,_3442,_8180,_17928, ...
1,7,44,213,-834,2782,_8180,21685,_52694, ...
1,8,58,324,1450,5458,17928,52694,141112, ...
A086624
Main diagonal of square table A086623 of coefficients of f(x,y) that satisfies f(x,y) = (1-xy)/[(1-x)(1-y)] + xy*f(x,y)^2.
Original entry on oeis.org
1, 1, 4, 19, 100, 570, 3442, 21685, 141112, 941990, 6419174, 44493000, 312818326, 2226155632, 16008452202, 116167346499, 849724397580, 6259403310366, 46399703925202, 345894094030552
Offset: 0
A152172
a(n) is the number of Dyck paths of semilength n without height of peaks 0 (mod 3) and height of valleys 1 (mod 3).
Original entry on oeis.org
1, 1, 2, 3, 6, 12, 26, 59, 138, 332, 814, 2028, 5118, 13054, 33598, 87143, 227542, 597640, 1577866, 4185108, 11146570, 29798682, 79932298, 215072896, 580327122, 1569942098, 4257254850, 11569980794, 31508150890, 85968266198, 234975421554, 643317390627
Offset: 0
Jun Ma (majun(AT)math.sinica.edu.tw), Nov 27 2008
-
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
`if`(t=0 and irem(y, 3)=0, 0, b(x-1, y-1, 1))+
`if`(t=1 and irem(y, 3)=1, 0, b(x-1, y+1, 0))))
end:
a:= n-> b(2*n, 0$2):
seq(a(n), n=0..35); # Alois P. Heinz, Oct 23 2024
-
CoefficientList[Series[(1+x-2x^2-Sqrt[1-2x-3x^2+4x^4])/(2(1-x)x), {x, 0, 30}], x] (* Harvey P. Dale, Apr 10 2012 *)
-
{a(n) = my(A, E=ellinit([1, -1, 0, -1, 1]),b=1,c=1,v=[1]); if( n<0, 0, A = O(x); for(k=1, n, v=concat(v,(1/b)*(1/c)); b=(1/b)*(1/c); c=(1-ellmul(E,[0,1],2*k+1)[1])/b; v=concat(v,c) ); for(k=1, #v,A = 1 /(1 - v[#v+1-k]*x*A));polcoeff(A, n))}; \\ Thomas Scheuerle, Oct 23 2024
-
{a(n) = my(A,v=[1,1,-1,-1,3]); if( n<0, 0, A = O(x); for(k=1, n+1, v=concat(v,(1/v[#v])*(1/v[#v-1])); v=concat(v,(v[#v-2]*v[#v-1]-2)/(v[#v-4]*v[#v-3]*v[#v-2]^2*v[#v-1]^2*v[#v]))); for(k=1, #v,A = 1 /(1 - v[#v+1-k]*x*A));polcoeff(A, n))} \\ Thomas Scheuerle, Oct 23 2024
Showing 1-7 of 7 results.
Comments