A086639 Write decimal expansion of Pi in triangular form; sequence gives left edge.
3, 1, 1, 2, 5, 3, 2, 2, 4, 9, 9, 7, 8, 3, 8, 7, 2, 1, 8, 9, 5, 3, 6, 6, 3, 5, 7, 6, 2, 2, 9, 9, 4, 0, 4, 2, 3, 0, 4, 1, 6, 7, 8, 9, 9, 1, 2, 3, 0, 1, 7, 2, 2, 4, 7, 8, 3, 1, 8, 3, 0, 2, 7, 9, 1, 6, 2, 2, 6, 7, 6, 8, 1, 5, 7, 3, 7, 7, 2, 4, 9, 3, 2, 1, 9, 8, 9, 1, 2, 7, 7, 9, 4, 0, 9, 2, 9, 8, 4, 9, 9, 2, 0, 7, 0
Offset: 1
Examples
Triangle is 3 14 159 2653 58979 323846 2643383 27950288 419716939 9375105820 a(34) = 0 because in the decimals of Pi there is a 0 at position 562, following the triangular number A000217(33) = 561, i.e., in the first column of the 34th row in the above triangle. - _Michel Marcus_ and _M. F. Hasler_, Jan 06 2023
Programs
-
Mathematica
pi = RealDigits[Pi, 10, 5461][[1]]; Table[ pi[[n(n + 1)/2 + 1]], {n, 0, 104}] Module[{nn=110,pid},pid=RealDigits[Pi,10,(nn(nn+1))/2][[1]];TakeList[ pid,Range[ nn]]][[;;,1]] (* Harvey P. Dale, Mar 06 2023 *)
Formula
a(n) = A000796(1-n(n-1)/2). - M. F. Hasler, Oct 20 2011
a(n) = A000030(A090897(n)) if (and probably only if) a(n) is nonzero. - Michel Marcus and M. F. Hasler, Jan 06 2023
Extensions
Edited by Robert G. Wilson v, Jul 26 2003
Comments