cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086659 T(n,k) counts the set partitions of n containing k-1 blocks of length 1.

Original entry on oeis.org

1, 1, 3, 4, 4, 6, 11, 20, 10, 10, 41, 66, 60, 20, 15, 162, 287, 231, 140, 35, 21, 715, 1296, 1148, 616, 280, 56, 28, 3425, 6435, 5832, 3444, 1386, 504, 84, 36, 17722, 34250, 32175, 19440, 8610, 2772, 840, 120, 45, 98253, 194942, 188375, 117975, 53460, 18942, 5082, 1320, 165, 55
Offset: 2

Views

Author

Wouter Meeussen, Jul 27 2003

Keywords

Examples

			The 15 set partitions of {1,2,3,4} consist of 4 partitions with 0 blocks of length 1 : {{1,2,3,4}},{{1,2},{3,4}},{{1,3},{2,4}},{{1,4},{2,3}},
4 partitions with 1 block of length 1 : {{1},{2,3,4}},{{1,2,3},{4}},{{1,2,4},{3}},{{1,3,4},{2}}
6 partitions with 2 blocks of length 1 : {{1},{2},{3,4}},{{1},{2,3},{4}},{{1},{2,4},{3}},{{1,2},{3},{4}},{{1,3},{2},{4}},{{1,4},{2},{3}}.
(There are no partitions with n-1 blocks of length 1 and 1 with n of them)
    1;
    1,   3;
    4,   4,   6;
   11,  20,  10,  10;
   41,  66,  60,  20, 15;
  162, 287, 231, 140, 35, 21;
  ...
		

Crossrefs

Row sums = Bell[n]-1 (A058692), first column=A000296, main diagonal = triangular numbers A000217.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1)*`if`(i=1, x^j, 1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n-2))(b(n$2)):
    seq(T(n), n=2..16);  # Alois P. Heinz, Mar 08 2015
  • Mathematica
    Table[Count[Count[ #, {_Integer}]&/@SetPartitions[n], # ]&/@Range[0, n-2], {n, 2, 10}]

Formula

E.g.f.: exp(x*y)*(exp(exp(x)-1-x)-1). - Vladeta Jovovic, Jul 28 2003

Extensions

More terms from Vladeta Jovovic, Jul 28 2003