A086659 T(n,k) counts the set partitions of n containing k-1 blocks of length 1.
1, 1, 3, 4, 4, 6, 11, 20, 10, 10, 41, 66, 60, 20, 15, 162, 287, 231, 140, 35, 21, 715, 1296, 1148, 616, 280, 56, 28, 3425, 6435, 5832, 3444, 1386, 504, 84, 36, 17722, 34250, 32175, 19440, 8610, 2772, 840, 120, 45, 98253, 194942, 188375, 117975, 53460, 18942, 5082, 1320, 165, 55
Offset: 2
Examples
The 15 set partitions of {1,2,3,4} consist of 4 partitions with 0 blocks of length 1 : {{1,2,3,4}},{{1,2},{3,4}},{{1,3},{2,4}},{{1,4},{2,3}}, 4 partitions with 1 block of length 1 : {{1},{2,3,4}},{{1,2,3},{4}},{{1,2,4},{3}},{{1,3,4},{2}} 6 partitions with 2 blocks of length 1 : {{1},{2},{3,4}},{{1},{2,3},{4}},{{1},{2,4},{3}},{{1,2},{3},{4}},{{1,3},{2},{4}},{{1,4},{2},{3}}. (There are no partitions with n-1 blocks of length 1 and 1 with n of them) 1; 1, 3; 4, 4, 6; 11, 20, 10, 10; 41, 66, 60, 20, 15; 162, 287, 231, 140, 35, 21; ...
Links
- Alois P. Heinz, Rows n = 2..142, flattened
Crossrefs
Programs
-
Maple
with(combinat): b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!* b(n-i*j, i-1)*`if`(i=1, x^j, 1), j=0..n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n-2))(b(n$2)): seq(T(n), n=2..16); # Alois P. Heinz, Mar 08 2015
-
Mathematica
Table[Count[Count[ #, {_Integer}]&/@SetPartitions[n], # ]&/@Range[0, n-2], {n, 2, 10}]
Formula
E.g.f.: exp(x*y)*(exp(exp(x)-1-x)-1). - Vladeta Jovovic, Jul 28 2003
Extensions
More terms from Vladeta Jovovic, Jul 28 2003