A086670 Sum of floor(d/2) where d is a divisor of n.
0, 1, 1, 3, 2, 5, 3, 7, 5, 8, 5, 13, 6, 11, 10, 15, 8, 18, 9, 20, 14, 17, 11, 29, 14, 20, 18, 27, 14, 34, 15, 31, 22, 26, 22, 44, 18, 29, 26, 44, 20, 46, 21, 41, 36, 35, 23, 61, 27, 45, 34, 48, 26, 58, 34, 59, 38, 44, 29, 82, 30, 47, 49, 63, 40, 70, 33, 62, 46, 70, 35, 96, 36, 56
Offset: 1
Keywords
Examples
10 has divisors 1,2,5,10. floor(d/2) gives 0,1,2,5, therefore a(10)=8.
Programs
-
Mathematica
Table[Total[Floor[Divisors[n]/2]],{n,80}] (* Harvey P. Dale, Feb 13 2023 *)
-
PARI
for (n=1,100,s=0; fordiv(i=n,i,s+=floor(i/2)); print1(","s))
-
PARI
a(n) = my(f = factor(n)); (sigma(f) - (numdiv(f)/(valuation(n, 2)+1)))>>1 \\ David A. Corneth, Apr 15 2022 using Franklin T. Adams-Watters's formula
Formula
G.f.: Sum_{n>=1} floor(n/2)*x^n/(1-x^n). - Joerg Arndt, Jan 30 2011
G.f.: Sum_{k>=1} x^(2*k) / ((1 + x^k) * (1 - x^k)^2). - Ilya Gutkovskiy, Aug 02 2021
a(n) = Sum_{i=1..floor(n/2)} A135539(n,2*i). - Ridouane Oudra, Apr 15 2022
Comments