cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086689 a(n) = Sum_{i=1..n} i^2*t(i), where t = A000217.

Original entry on oeis.org

1, 13, 67, 227, 602, 1358, 2730, 5034, 8679, 14179, 22165, 33397, 48776, 69356, 96356, 131172, 175389, 230793, 299383, 383383, 485254, 607706, 753710, 926510, 1129635, 1366911, 1642473, 1960777, 2326612, 2745112
Offset: 1

Views

Author

Jon Perry, Jul 28 2003

Keywords

Comments

This sequence is related to A001296 by a(n) = n*A001296(n) - Sum_{i=0..n-1} A001296(i) with n>0. - Bruno Berselli, Jan 21 2013

Examples

			a(4) = 227 = 1^2*A000217(1)+2^2*A000217(2)+3^2*A000217(3)+4^2*A000217(4).
		

Crossrefs

Cf. A001296.

Programs

  • Magma
    [n*(n+1)*(n+2)*(12*n^2+9*n-1)/120 : n in [1..40]]; // Wesley Ivan Hurt, Nov 19 2014
  • Maple
    A086689:=n->n*(n+1)*(n+2)*(12*n^2+9*n-1)/120: seq(A086689(n), n=1..40); # Wesley Ivan Hurt, Nov 19 2014
  • Mathematica
    Table[n (n + 1) (n + 2) (12 n^2 + 9 n - 1)/120, {n, 40}] (* Wesley Ivan Hurt, Nov 19 2014 *)
    CoefficientList[Series[(1 + 7 x + 4 x^2) / (x - 1)^6, {x, 0, 50}], x] (* Vincenzo Librandi, Nov 20 2014 *)
  • PARI
    t(n)=n*(n+1)/2 for(i=1,30,print1(","sum(j=1,i,j^2*t(i))))
    

Formula

a(n) = n*(n+1)*(n+2)*(12*n^2+9*n-1)/120.
G.f.: x*(1+7*x+4*x^2) / (x-1)^6. - R. J. Mathar, Sep 15 2012
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Wesley Ivan Hurt, Nov 19 2014
a(n) = Sum_{i=1..n} ( i*Sum_{k=1..i} i*k ). - Wesley Ivan Hurt, Nov 19 2014