cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086700 Euler phi function applied to the triangular numbers.

Original entry on oeis.org

1, 2, 2, 4, 8, 12, 12, 12, 24, 40, 20, 24, 72, 48, 32, 64, 96, 108, 72, 48, 120, 220, 88, 80, 240, 216, 108, 168, 224, 240, 240, 160, 320, 384, 144, 216, 648, 432, 192, 320, 480, 504, 420, 240, 528, 1012, 368, 336, 840, 640, 384, 624, 936, 720, 480, 432, 1008, 1624, 464, 480, 1800, 1080, 576, 768, 960, 1320
Offset: 1

Views

Author

Jon Perry, Jul 28 2003

Keywords

Examples

			a(3) = phi(6) = 2.
		

Crossrefs

Programs

  • Maple
    with(numtheory):with(combinat):a:=n->phi(binomial(n,2)): seq(a(n), n=2..31); # Zerinvary Lajos, Oct 05 2007
  • Mathematica
    EulerPhi[Accumulate[Range[70]]] (* Harvey P. Dale, Sep 16 2012 *)
  • PARI
    vector(66,n,eulerphi(n*(n+1)/2))
    
  • Sage
    [euler_phi(binomial(n,2)) for n in range(2,32)] # Zerinvary Lajos, Jun 06 2009

Formula

a(n) = A000010(A000217(n)). - Michel Marcus, Aug 21 2017
Sum_{k=1..n} a(k) = c * n^3 / 4 + O((n*log(n))^2), where c = Product_{p prime} (1 - 2/p^2) = 0.322634... (A065474). - Amiram Eldar, Dec 09 2024