cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086708 Primes p such that p-1 and p+1 are both divisible by cubes (other than 1).

Original entry on oeis.org

271, 487, 593, 751, 809, 919, 1249, 1567, 1783, 1889, 1999, 2647, 2663, 2753, 2969, 3079, 3511, 3617, 3727, 3833, 3943, 4049, 4159, 4481, 4591, 4751, 4801, 5023, 6857, 6967, 7937, 8263, 8369, 9127, 9343, 10289, 10313, 10529, 10639, 11071, 11177
Offset: 1

Views

Author

Jason Earls and Amarnath Murthy, Jul 28 2003

Keywords

Crossrefs

Cf. A162870 (subsequence).

Programs

  • Maple
    isA086708 := proc(n)
        if isprime(n) then
            isA046099(n-1) and isA046099(n+1) ;
        else
            false;
        end if;
    end proc:
    n := 1:
    for c from 1 to 50000 do
        if isA086708(c) then
            printf("%d %d\n",n,c) ;
            n := n+1 ;
        end if;
    end do: # R. J. Mathar, Dec 08 2015
    Res:= NULL: count:= 0:
    p:= 1:
    while count < 100 do
      p:= nextprime(p);
      if max(seq(t[2],t=ifactors(p-1)[2]))>=3 and max(seq(t[2],t=ifactors(p+1)[2]))>=3 then
        count:= count+1; Res:= Res, p;
      fi
    od:
    Res; # Robert Israel, Jul 11 2018
  • Mathematica
    f[n_]:=Max[Last/@FactorInteger[n]]; lst={};Do[p=Prime[n];If[f[p-1]>=3&&f[p+1]>=3,AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 03 2009 *)
    dbcQ[p_]:=AnyTrue[Surd[#,3]&/@Rest[Divisors[p-1]],IntegerQ]&&AnyTrue[Surd[#,3]&/@Rest[ Divisors[ p+1]],IntegerQ]; Select[ Prime[Range[1500]],dbcQ] (* Harvey P. Dale, Sep 21 2024 *)
  • PARI
    \\ Input no. of iterations n, power p and number to subtract and add k.
    powerfreep4(n,p,k) = { c=0; pc=0; forprime(x=2,n, pc++; if(!ispowerfree(x-k,p) && !ispowerfree(x+k,p), c++; print1(x","); ) ); print(); print(c","pc","c/pc+.0) }
    ispowerfree(m,p1) = { flag=1; y=component(factor(m),2); for(i=1,length(y), if(y[i] >= p1,flag=0;break); ); return(flag) } \\ Cino Hilliard, Dec 08 2003

Formula

{p in A000040: p+1 in A046099 and p-1 in A046099}. - R. J. Mathar, Dec 08 2015
A089199 INTERSECT A089200. - R. J. Mathar, Dec 08 2015

Extensions

Definition clarified by Harvey P. Dale, Sep 21 2024