A086708 Primes p such that p-1 and p+1 are both divisible by cubes (other than 1).
271, 487, 593, 751, 809, 919, 1249, 1567, 1783, 1889, 1999, 2647, 2663, 2753, 2969, 3079, 3511, 3617, 3727, 3833, 3943, 4049, 4159, 4481, 4591, 4751, 4801, 5023, 6857, 6967, 7937, 8263, 8369, 9127, 9343, 10289, 10313, 10529, 10639, 11071, 11177
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A162870 (subsequence).
Programs
-
Maple
isA086708 := proc(n) if isprime(n) then isA046099(n-1) and isA046099(n+1) ; else false; end if; end proc: n := 1: for c from 1 to 50000 do if isA086708(c) then printf("%d %d\n",n,c) ; n := n+1 ; end if; end do: # R. J. Mathar, Dec 08 2015 Res:= NULL: count:= 0: p:= 1: while count < 100 do p:= nextprime(p); if max(seq(t[2],t=ifactors(p-1)[2]))>=3 and max(seq(t[2],t=ifactors(p+1)[2]))>=3 then count:= count+1; Res:= Res, p; fi od: Res; # Robert Israel, Jul 11 2018
-
Mathematica
f[n_]:=Max[Last/@FactorInteger[n]]; lst={};Do[p=Prime[n];If[f[p-1]>=3&&f[p+1]>=3,AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 03 2009 *) dbcQ[p_]:=AnyTrue[Surd[#,3]&/@Rest[Divisors[p-1]],IntegerQ]&&AnyTrue[Surd[#,3]&/@Rest[ Divisors[ p+1]],IntegerQ]; Select[ Prime[Range[1500]],dbcQ] (* Harvey P. Dale, Sep 21 2024 *)
-
PARI
\\ Input no. of iterations n, power p and number to subtract and add k. powerfreep4(n,p,k) = { c=0; pc=0; forprime(x=2,n, pc++; if(!ispowerfree(x-k,p) && !ispowerfree(x+k,p), c++; print1(x","); ) ); print(); print(c","pc","c/pc+.0) } ispowerfree(m,p1) = { flag=1; y=component(factor(m),2); for(i=1,length(y), if(y[i] >= p1,flag=0;break); ); return(flag) } \\ Cino Hilliard, Dec 08 2003
Formula
Extensions
Definition clarified by Harvey P. Dale, Sep 21 2024