cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A086376 Maximal coefficient of the polynomial (1-x)*(1-x^2)*...*(1-x^n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 4, 3, 3, 4, 6, 5, 6, 7, 8, 8, 10, 11, 16, 16, 18, 21, 28, 29, 34, 41, 50, 56, 66, 80, 100, 114, 131, 158, 196, 225, 263, 320, 388, 455, 532, 644, 786, 921, 1083, 1321, 1600, 1891, 2218, 2711, 3280, 3895, 4588, 5591, 6780, 8051, 9519, 11624
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 07 2003

Keywords

Crossrefs

Programs

  • Maple
    A086376 := proc(n)
            g := expand(mul( 1-x^k,k=1..n) );
            convert(PolynomialTools[CoefficientVector](g, x), list):
            max(%);
    end proc:
    seq(A086376(n),n=0..60) ; # R. J. Mathar, Jun 01 2011
  • Mathematica
    b[0] = 1; b[n_] := b[n] = b[n-1]*(1-x^n) // Expand;
    a[n_] := CoefficientList[b[n], x] // Max;
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 13 2017 *)
  • PARI
    a(n)=vecmax(Vec(prod(k=1,n,1-x^k)));
    vector(100,n,a(n-1)) \\ Joerg Arndt, Jan 31 2024

Extensions

More terms from Sascha Kurz, Sep 22 2003
a(0)=1 prepended by Alois P. Heinz, Apr 12 2017

A086795 a(n) is the number of terms in the expansion of (x-2y)*(x^2-2y^2)*(x^3-2y^3)*...*(x^n-2y^n).

Original entry on oeis.org

2, 4, 7, 11, 13, 21, 28, 35, 42, 53, 65, 74, 87, 102, 117, 133, 150, 168, 188, 207, 228, 251, 273, 298, 323, 348, 375, 404, 433, 463, 494, 526, 559, 592, 627, 664, 701, 739, 778, 817, 858, 901, 944, 988, 1032, 1079, 1126, 1174, 1222, 1273
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 05 2003

Keywords

Crossrefs

Cf. A086781.

Programs

  • Maple
    A086795 := proc(n)
        mul( x^i-2*y^i,i=1..n) ;
        expand(%) ;
        nops([coeffs(%)]) ;
    end proc: # R. J. Mathar, Sep 15 2012

A225549 a(n) is the number of terms in the expansion of (x-y)*(x^4-y^4)*(x^9-y^9)*...*(x^(n^2)-y^(n^2)).

Original entry on oeis.org

2, 4, 8, 16, 24, 40, 68, 103, 162, 236, 344, 453, 612, 790, 994, 1229, 1432, 1782, 2134, 2517, 2968, 3460, 3974, 4543, 5160, 5822, 6546, 7347, 8184, 9080, 10058, 11075, 12166, 13316, 14536, 15837, 17202, 18654, 20156, 21765, 23450, 25212, 27074, 29001, 31032, 33158, 35370, 37679, 40070, 42578
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com) and Robert G. Wilson v, May 10 2013

Keywords

Comments

In the definition one can take y=1. Thus the sequence becomes the number of terms in the polynomial of the product{k=1..n} (1-x^(k^2)).

Crossrefs

Programs

  • Mathematica
    a[n_] := Length@ ExpandAll@ Product[(1 - x^(k^2)), {k, n}]; Array[f, 40]
  • PARI
    a(n)=my(P=prod(k=1,n,1-'x^k^2)); sum(i=0, poldegree(P), polcoeff(P,i)!=0) \\ Charles R Greathouse IV, May 10 2013

A221991 a(n) is the number of terms in the expansion of (x-y)(x^2-y^2)*(x^3-y^3)*(x^5-y^5)*...*(x^p_i-y^p_i), where p_i is the i-th prime.

Original entry on oeis.org

2, 4, 6, 8, 10, 20, 22, 36, 42, 66, 90, 110, 142, 184, 232, 284, 342, 400, 458, 532, 604, 678, 756, 838, 928, 1026, 1126, 1230, 1336, 1446, 1558, 1686, 1816, 1954, 2092, 2242, 2392, 2550, 2712, 2880, 3052, 3232, 3412, 3604, 3796, 3994, 4192, 4404, 4626, 4854, 5082
Offset: 1

Views

Author

Robert G. Wilson v, May 12 2013

Keywords

Comments

In the definition one can take y=1. Thus the sequence becomes the number of terms in the polynomial of the product{k=0..n} (1-x^p_i), where p_i is the i-th prime and p_0 = 1.
Offset is 1 to keep it parallel to other like sequences.

Crossrefs

Programs

  • Mathematica
    f[n_] := Length@ ExpandAll[(1 - x) Product[(1 - x^Prime[k]), {k, n}]]; Array[f, 51, 0]

A301705 a(n) is the number of zero coefficients of the polynomial (x-1)*(x^2-1)*...*(x^n-1) below the leading coefficient.

Original entry on oeis.org

0, 0, 1, 4, 4, 8, 11, 12, 14, 20, 25, 26, 24, 42, 37, 40, 46, 46, 45, 50, 62, 62, 69, 72, 80, 78, 79, 74, 88, 94, 97, 102, 94, 104, 105, 106, 102, 116, 137, 130, 126, 132, 121, 122, 134, 152, 155, 160, 164, 156, 143, 156, 170, 172, 167, 178, 186, 194, 185, 168, 174, 176, 183, 182, 192, 194, 205, 196, 200, 188
Offset: 1

Views

Author

Ovidiu Bagdasar, Mar 25 2018

Keywords

Examples

			Denote P_n(x) = (x-1)...(x^n-1).
P_1(x) = x-1, hence a(1)=0.
P_2(x) = (x-1)*(x^2-1) = x^3-x^2-x+1, hence a(2)=0;
P_3(x) = (x-1)*(x^2-1)*(x^3-1) = x^6-x^5-x^4+x^2+x-1, hence a(3)=1;
P_4(x) = (x-1)*(x^2-1)*(x^3-1)*(x^4-1) = x^10 - x^9 - x^8+2x^5-x^2-x+1, hence a(4)=4.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(`if`(i=0, 1, 0), i=[(p-> seq(coeff(p, x, i),
             i=0..degree(p)))(expand(mul(x^i-1, i=1..n)))]):
    seq(a(n), n=1..70);  # Alois P. Heinz, Mar 29 2019
  • Mathematica
    Rest@ Array[Count[CoefficientList[Times @@ Array[x^# - 1 &, # - 1], x], ?(# == 0 &)] &, 71] (* _Michael De Vlieger, Mar 29 2019 *)
  • PARI
    a(n) = #select(x->(x==0), Vec((prod(k=1, n, (x^k-1))))); \\ Michel Marcus, Apr 02 2018

Formula

a(n) = 1+n(n+1)/2-A086781(n).

A222028 a(n) is the number of terms in the expansion of (x-y)(x^3-y^3)*(x^6-y^6)*(x^10-y^10)*...*(x^T_i-y^T_i), where T_i is the i-th triangular number.

Original entry on oeis.org

2, 4, 8, 15, 28, 41, 66, 92, 132, 175, 232, 287, 360, 475, 570, 727, 852, 1009, 1220, 1397, 1646, 1891, 2154, 2441, 2772, 3121, 3508, 3891, 4334, 4791, 5282, 5797, 6376, 6983, 7618, 8285, 8984, 9713, 10500, 11319, 12182, 13093, 14028, 15023, 16064, 17157, 18276, 19447, 20680, 21953
Offset: 1

Views

Author

Robert G. Wilson v, May 12 2013

Keywords

Comments

In the definition one can take y=1. Thus the sequence becomes the number of terms in the polynomial of the product{k=0..n} (1-x^T_i), where G_i is the i-th triangular number.

Crossrefs

Programs

  • Mathematica
    f[n_] := Length@ ExpandAll@ Product[1 - x^(k (k + 1)/2), {k, n}]; Array[f, 50]
Showing 1-6 of 6 results.