A086787 a(n) = Sum_{i=1..n} ( Sum_{j=1..n} i^j ).
1, 8, 56, 494, 5699, 82200, 1419760, 28501116, 651233661, 16676686696, 472883843992, 14705395791306, 497538872883727, 18193397941038736, 714950006521386976, 30046260016074301944, 1344648068888240941017
Offset: 1
Keywords
Examples
a(2) = 8 = 1 + 1 + 2 + 4 = 1^1 + 1^2 + 2^1 + 2^2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..385
Programs
-
Maple
seq(1-Psi(n)-gamma+sum(i^(n+1)/(i-1),i = 2 .. n),n=1..20);
-
Mathematica
Table[Sum[i^j,{i,1,n},{j,1,n}],{n,1,24}] (* Alexander Adamchuk, Oct 08 2006 *) Table[ n + Sum[ i*(i^n-1)/(i-1), {i,2,n} ], {n,1,17} ] (* Alexander Adamchuk, Nov 03 2006 *)
-
PARI
a(n)=sum(i=1,n,sum(j=1,n,i^j)) \\ Charles R Greathouse IV, Jul 19 2013
-
PARI
a(n)=round(1-psi(n)-Euler+sum(i=2,n,i^(n+1)/(i-1))) \\ Charles R Greathouse IV, Jul 19 2013
-
Python
def A086787(n): return sum(i**j for i in range(1,n+1) for j in range(1,n+1)) # Chai Wah Wu, Jan 08 2022
-
Python
from sympy import digamma, EulerGamma from fractions import Fraction def A086787(n): return 1-digamma(n)-EulerGamma + sum(Fraction(i**(n+1),i-1) for i in range(2,n+1)) # Chai Wah Wu, Jan 08 2022
Formula
1 - Psi(n) - gamma + Sum_{i=2..n} (i^(n+1)/(i-1)), where Psi(n) is the digamma function and gamma is Euler's constant.
a(n) = Sum[ i^j, {i,1,n}, {j,1,n} ] = n + Sum[ i*(i^n - 1)/(i - 1), {i,2,n} ]. - Alexander Adamchuk, Nov 03 2006
a(n) = Sum_{k=1..n} (B(k+1, n+1) - B(k+1, 1))/(k+1), where B(n, x) are the Bernoulli polynomials. - Daniel Suteu, Jun 25 2018
a(n) ~ c * n^n, where c = 1 / (1 - exp(-1)) = A185393 = 1.58197670686932642438... - Vaclav Kotesovec, Nov 06 2021
Extensions
Edited by Max Alekseyev, Jan 29 2012
Comments