2, 3, 5, 7, 13, 17, 19, 31, 47, 59, 61, 71, 101, 103, 107, 109, 137, 149, 151, 157, 167, 181, 197, 211, 223, 227, 229, 269, 317, 337, 349, 353, 379, 383, 389, 401, 421, 439, 449, 457, 463, 479, 521, 523, 541, 547, 563, 569, 571, 587, 599, 613, 617, 631, 643
Offset: 1
A124405
a(n) = 1 + Sum_{i=1..n} Sum_{j=1..n} i^j.
Original entry on oeis.org
2, 9, 57, 495, 5700, 82201, 1419761, 28501117, 651233662, 16676686697, 472883843993, 14705395791307, 497538872883728, 18193397941038737, 714950006521386977, 30046260016074301945, 1344648068888240941018
Offset: 1
-
List([1..30], n-> n+1 + Sum([2..n], j-> j*(j^n-1)/(j-1)) ); # G. C. Greubel, Dec 25 2019
-
[0] cat [n+1 + (&+[j*(j^n-1)/(j-1): j in [2..n]]): n in [2..30]]; // G. C. Greubel, Dec 25 2019
-
seq( n+1+add(j*(j^n-1)/(j-1), j=2..n), n=1..30); # G. C. Greubel, Dec 25 2019
-
Table[Sum[i^j,{i,1,n},{j,1,n}]+1,{n,1,20}]
-
vector(30, n, n+1 + sum(j=2,n, j*(j^n-1)/(j-1)) ) \\ G. C. Greubel, Dec 25 2019
-
[n+1 + sum(j*(j^n-1)/(j-1) for j in (2..n)) for n in (1..30)] # G. C. Greubel, Dec 25 2019
A215084
a(n) = sum of the sums of the k first n-th powers.
Original entry on oeis.org
0, 1, 6, 46, 470, 6035, 93436, 1695036, 35277012, 828707925, 21693441550, 626254969978, 19766667410282, 677231901484775, 25031756512858200, 992872579254244088, 42066929594261568840, 1896157095455962952169, 90601933352843530354170, 4574495282686422755339734, 243359175218492577008763726
Offset: 0
a(3) = (1^3) + (1^3 + 2^3) + (1^3 + 2^3 + 3^3) = (1^3 + 1^3 + 1^3) + (2^3 + 2^3) + (3^3) = 3 * 1^3 + 2 * 2^3 + 1 * 3^3 = 46. - _David A. Corneth_, Jun 27 2018
-
Table[Sum[Sum[j^n, {j, 1, k}], {k, 0, n}], {n, 0, 20}]
a[n_] := (n+1)*HarmonicNumber[-1, -n] - HarmonicNumber[n, -n-1] + (n+1)*HarmonicNumber[n, -n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 05 2013 *)
Table[Total[Accumulate[Range[n]^n]],{n,0,20}] (* Harvey P. Dale, Mar 29 2020 *)
-
a(n) = sum(k=1, n, sum(j=1, k, j^n)); \\ Michel Marcus, Jun 25 2018
-
a(n) = sum(i=1, n, (n+1-i) * i^n); \\ David A. Corneth, Jun 27 2018
A123857
Composite numbers m that divide A123855(m-1) = Sum_{i=1..m-1} Sum_{j=1..m-1} prime(i)^j.
Original entry on oeis.org
4, 8, 16, 32, 38, 64, 128, 205, 256, 316, 512, 736, 1024, 2048, 3776, 4096, 4916, 5888, 7736, 8192, 11138, 16384, 22287, 23308, 23924, 32768, 39538, 62336, 65536, 71936
Offset: 1
-
Do[f=Mod[Sum[Sum[PowerMod[Prime[i],j,n],{i,1,n-1}],{j,1,n-1}],n];If[f==0&&!PrimeQ[n],Print[n]],{n,2,512}]
A124239
a(n) = Sum_{k=1..n} Sum_{m=1..n} (2*k - 1)^m.
Original entry on oeis.org
1, 14, 197, 3704, 90309, 2704470, 95856025, 3921108576, 181756280697, 9413656622446, 538727822713277, 33757715581666296, 2298714540642445405, 169016703698449309846, 13345320616706684277361, 1126219424250538393789824, 101160070702700567996590513, 9636001314414804672487492878
Offset: 1
-
Table[Sum[(2k-1)^m,{k,1,n},{m,1,n}],{n,1,20}]
-
a(n) = sum(k=1, n, sum(m=1, n, (2*k - 1)^m)); \\ Michel Marcus, Apr 24 2022
A349117
a(n) = Sum_{m=1..n} (Sum_{k=1..m} (Sum_{j=1..k} j^k)).
Original entry on oeis.org
1, 7, 49, 445, 5266, 77258, 1349554, 27306462, 627568355, 16142172173, 459332766227, 14324480721391, 485783513552956, 17798331858727376, 700589353757045796, 29484907446960975744, 1321168518044435497005, 62795290373559355285155, 3155553461189975793914005
Offset: 1
-
Table[Sum[Sum[Sum[j^k, {j, 1, k}], {k, 1, m}], {m, 1, n}], {n, 1, 20}]
A123269
Sum[ i^j^k, {i,1,n}, {j,1,n}, {k,1,n} ].
Original entry on oeis.org
1, 28, 7625731729896, 13407807929942597099574024998205985135931742965325158317510351105024878248924471298029103219186757034747676158536830429928105045387310278568778808509188348
Offset: 1
Numbers n that divide a(n) are listed in
A124391(n) = {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 16, 18, 20, 21, 22, 23, 24, 27, 28, 31, ...}.
-
Table[Sum[i^j^k,{i,1,n},{j,1,n},{k,1,n}],{n,1,5}]
-
a(n)=sum(i=1,n,sum(j=1,n,sum(k=1,n,i^j^k))) \\ Charles R Greathouse IV, May 15 2013
Comments