cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A123856 Primes p that divide A123855(p-1).

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 31, 47, 59, 61, 71, 101, 103, 107, 109, 137, 149, 151, 157, 167, 181, 197, 211, 223, 227, 229, 269, 317, 337, 349, 353, 379, 383, 389, 401, 421, 439, 449, 457, 463, 479, 521, 523, 541, 547, 563, 569, 571, 587, 599, 613, 617, 631, 643
Offset: 1

Views

Author

Alexander Adamchuk, Oct 13 2006

Keywords

Comments

A123855(n) = Sum_{j=1..n} Sum_{i=1..n} prime(i)^j.
Prime p = a(n) divides A123855(p-1).
Nonprime numbers n that divide A123855(n-1) are listed in A123857.
It appears that 2^k divides A123855(2^k-1) for all k>0 (confirmed for 0

Crossrefs

Programs

  • Maple
    A123855_mod := proc(n,p) option remember; local s,i,pi; s:=0: for i to n do pi:= ithprime(i) mod p: if pi=1 then s:=s+n mod p: else s := s+pi*(pi &^ n - 1)/(pi-1) mod p fi od end; A123856 := proc(n::posint) option remember; local p; if n>1 then p:=nextprime( procname(n-1)) else p:=2 fi: while A123855_mod(p-1,p)<>0 do p:=nextprime( p ) od: p end; # M. F. Hasler, Nov 10 2006
  • Mathematica
    fQ[p_] := Mod[ Sum[ PowerMod[ Prime@ i, j, p], {j, p - 1}, {i, p - 1}], p] == 0; Select[ Prime@ Range@ 117, fQ] (* Robert G. Wilson v, Jun 10 2011 *)

A123857 Composite numbers m that divide A123855(m-1) = Sum_{i=1..m-1} Sum_{j=1..m-1} prime(i)^j.

Original entry on oeis.org

4, 8, 16, 32, 38, 64, 128, 205, 256, 316, 512, 736, 1024, 2048, 3776, 4096, 4916, 5888, 7736, 8192, 11138, 16384, 22287, 23308, 23924, 32768, 39538, 62336, 65536, 71936
Offset: 1

Author

Alexander Adamchuk, Oct 13 2006, Oct 15 2006, Oct 22 2006

Keywords

Comments

Most listed terms a(n) are the powers of 2, except for n = 5,8,10,12,... Corresponding terms that are not powers of 2 are listed in A124238.
It appears that 2^k divides A123855(2^k-1) for all k > 0 (confirmed for 0 < k < 10).
Prime p that divide A123855(p-1) are listed in A123856.

Crossrefs

Programs

  • Mathematica
    Do[f=Mod[Sum[Sum[PowerMod[Prime[i],j,n],{i,1,n-1}],{j,1,n-1}],n];If[f==0&&!PrimeQ[n],Print[n]],{n,2,512}]

Extensions

More terms from Max Alekseyev, Sep 13 2009

A124271 a(n) = Sum_{i=1..n} (prime(i)^n - 1)/(prime(i) - 1).

Original entry on oeis.org

1, 7, 51, 611, 19839, 603331, 32981935, 1469991559, 108336139407, 17389027481287, 1334783150250945, 222909199163881075, 31099653342061054699, 2994181661163361882651, 387134597481460117602345, 92092112661138292186297999, 26679920606217066273305101055
Offset: 1

Author

Alexander Adamchuk, Oct 23 2006

Keywords

Crossrefs

Cf. A124272 (prime terms of this sequence), A124273 (primes p that divide a(p)), A124274 (nonprimes n that divide a(n)).
Similar sequence: A123855. See also A123856.

Programs

  • Magma
    [&+[(NthPrime(k)^n - 1) div (NthPrime(k) - 1): k in [1..n]]: n in [1..20]]; // Vincenzo Librandi, Oct 21 2018
  • Mathematica
    Table[Sum[(Prime[i]^n-1)/(Prime[i]-1),{i,1,n}],{n,1,20}]
  • PARI
    a(n) = sum(i=1, n, (prime(i)^n - 1)/(prime(i) - 1)) \\ Jianing Song, Oct 20 2018
    

A124239 a(n) = Sum_{k=1..n} Sum_{m=1..n} (2*k - 1)^m.

Original entry on oeis.org

1, 14, 197, 3704, 90309, 2704470, 95856025, 3921108576, 181756280697, 9413656622446, 538727822713277, 33757715581666296, 2298714540642445405, 169016703698449309846, 13345320616706684277361, 1126219424250538393789824, 101160070702700567996590513, 9636001314414804672487492878
Offset: 1

Author

Alexander Adamchuk, Oct 22 2006

Keywords

Comments

a(3) = 197 and a(11) = 538727822713277 are primes.
p divides a(p+1) for primes p > 3.
a(2*k-1) is odd. a(2*k) is even. a(2^k) is divisible by 2^(2*k - 1) for k > 0.
Numbers n such that a(n) is divisible by n are listed in A124240.

Crossrefs

Programs

  • Mathematica
    Table[Sum[(2k-1)^m,{k,1,n},{m,1,n}],{n,1,20}]
  • PARI
    a(n) = sum(k=1, n, sum(m=1, n, (2*k - 1)^m)); \\ Michel Marcus, Apr 24 2022

Formula

a(n) = Sum_{k=1..n} Sum_{m=1..n} (2*k - 1)^m.
a(n) = n + Sum_{k=2..n} (2*k - 1)*((2*k - 1)^n - 1)/(2*(k - 1)).

A124275 Terms of A123856 that are not terms of A124273.

Original entry on oeis.org

2, 5, 181
Offset: 1

Author

Alexander Adamchuk, Oct 23 2006

Keywords

Comments

Primes that divide A123855(p-1) = Sum_{j=1..p-1} Sum_{i=1..p-1} prime(i)^j but not A124271(p) = Sum_{i=1..p} (prime(i)^p - 1)/(prime(i) - 1).
The next term if it exists is greater than 1000.
The next term A124275(4), if it exists, is larger than 25000. (Checked by calculating sequences A123856 and A124273 to 1200 terms.) - M. F. Hasler, Nov 10 2006

Examples

			A123856(n) begins {2, 3, 5, 7, 13, 17, 19, 31, 47, 59, 61, 71, 101, 103, 107, 109, 137, 149, 151, 157, 167, 181, 197, ...}.
A124273(n) begins {3, 7, 13, 17, 19, 31, 47, 59, 61, 71, 101, 103, 107, 109, 137, 149, 151, 157, 167, 197, ...}.
Thus a(1) = 2, a(2) = 5, a(3) = 181.
		

Crossrefs

Programs

A124238 Terms of A123857 that are not powers of 2.

Original entry on oeis.org

38, 205, 316, 736, 3776, 4916, 5888, 7736, 11138, 22287, 23308, 23924, 39538, 62336, 71936
Offset: 1

Author

Alexander Adamchuk, Oct 22 2006

Keywords

Comments

A123857 list composite indices n that divide A123855(n-1) = Sum[ Sum[ Prime[i]^j, {i,1,n-1}], {j,1,n-1}]. Corresponding indices n such that A123857(n) belongs to this sequence are 5,8,10,12,...

Crossrefs

Extensions

More terms from Max Alekseyev, Sep 13 2009
Showing 1-6 of 6 results.