A086798 Number of coefficients equal to zero in n-th cyclotomic polynomial.
0, 0, 0, 1, 0, 0, 0, 3, 4, 0, 0, 2, 0, 0, 2, 7, 0, 4, 0, 4, 4, 0, 0, 6, 16, 0, 16, 6, 0, 2, 0, 15, 6, 0, 8, 10, 0, 0, 8, 12, 0, 4, 0, 10, 18, 0, 0, 14, 36, 16, 10, 12, 0, 16, 24, 18, 12, 0, 0, 10, 0, 0, 28, 31, 18, 6, 0, 16, 14, 8, 0, 22, 0, 0, 34, 18, 30, 8, 0, 28, 52, 0, 0, 16, 24, 0, 18, 30, 0
Offset: 1
Keywords
References
- See A051664.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537 (terms 1..1000 from T. D. Noe)
Crossrefs
Programs
-
Mathematica
Table[Count[CoefficientList[Cyclotomic[n, x], x], _?(#==0&)], {n, 0, 100}]
-
PARI
a(n)=sum(k=0,eulerphi(n),if(polcoeff(polcyclo(n),k),0,1))
-
PARI
A086798(n) = (1 + eulerphi(n) - length(select(x->x!=0, Vec(polcyclo(n))))); \\ Antti Karttunen, Sep 21 2018
Formula
From Benoit Cloitre, Aug 06 2003: (Start)
a(4n+2) = a(2n+1); a(4n) = a(2n) + phi(2n).
When p is an odd prime and m integer >= 1: a(p^m) = a(2*p^m) = p^m - p^(m-1) - p + 1. In particular a(p) = a(2p) = 0. (End)
Extensions
More terms from Benoit Cloitre and T. D. Noe, Aug 06 2003