A086804 a(0)=0; for n > 0, a(n) = (n+1)^(n-2)*2^(n^2).
0, 1, 16, 2048, 1638400, 7247757312, 164995463643136, 18446744073709551616, 9803356117276277820358656, 24178516392292583494123520000000, 271732164163901599116133024293512544256
Offset: 0
References
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990; p. 219, 5.1.2.
Links
- Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.
- Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Star of David and other patterns in the Hosoya-like polynomials triangles, Journal of Integer Sequences, Vol. 21 (2018), Article 18.4.6.
- R. Flórez, N. McAnally, and A. Mukherjees, Identities for the generalized Fibonacci polynomial, Integers, 18B (2018), Paper No. A2.
- R. Flórez, R. Higuita and A. Mukherjees, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.
- Eric Weisstein's World of Mathematics, Discriminant
- Eric Weisstein's World of Mathematics, Chebyshev Polynomial of the Second Kind
- Eric Weisstein's World of Mathematics, Pell Polynomial
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
Magma
[0] cat [(n+1)^(n-2)*2^(n^2): n in [1..10]]; // G. C. Greubel, Nov 11 2018
-
Mathematica
Join[{0},Table[(n+1)^(n-2) 2^n^2,{n,10}]] (* Harvey P. Dale, May 01 2015 *)
-
PARI
a(n)=if(n<1,0,(n+1)^(n-2)*2^(n^2))
-
PARI
a(n)=if(n<1,0,n++; poldisc(poltchebi(n)'/n))
Formula
a(n) = ((n+1)^(n-2))*2^(n^2), n >= 1, a(0):=0.
a(n) = ((2^(2*(n-1)))*Det(Vn(xn[1],...,xn[n])))^2, n >= 1, with the determinant of the Vandermonde matrix Vn with elements (Vn)i,j:= xn[i]^j, i=1..n, j=0..n-1 and xn[i]:=cos(Pi*i/(n+1)), i=1..n, are the zeros of the Chebyshev U(n,x) polynomials.
a(n) = ((-1)^(n*(n-1)/2))*(2^(n*(n-2)))*Product_{i=1..n}((d/dx)U(n,x)|_{x=xn[i]}), n >= 1, with the zeros xn[i], i=1..n, given above.
Extensions
Formula and more terms from Vladeta Jovovic, Aug 07 2003
Comments