cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A106867 Primes of the form 2*x^2 + x*y + 3*y^2.

Original entry on oeis.org

2, 3, 13, 29, 31, 41, 47, 71, 73, 127, 131, 139, 151, 163, 179, 193, 197, 233, 239, 257, 269, 277, 311, 331, 349, 353, 397, 409, 439, 443, 461, 487, 491, 499, 509, 541, 547, 577, 587, 601, 647, 653, 673, 683, 739, 761, 811, 823, 857, 859, 863, 887, 929, 947
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant = -23.
Primes p such that the polynomial x^3-x-1 is irreducible over Zp. The polynomial discriminant is also -23. - T. D. Noe, May 13 2005
Also, primes p such that tau(p) = A000594(p) == -1 (mod 23). [A proof can probably be found in van der Blij (1952). Thanks to Juan Arias-de-Reyna for this reference. - N. J. A. Sloane, Nov 29 2016]

References

  • F. van der Blij, Binary quadratic forms of discriminant -23. Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math. 14, (1952). 498-503; Math. Rev. MR0052462.
  • John Raymond Wilton, "Congruence properties of Ramanujan's function τ(n)." Proceedings of the London Mathematical Society 2.1 (1930): 1-10. The primes are listed in Table II.

Crossrefs

Cf. A086965 (number of distinct zeros of x^3-x-1 mod prime(n)).
Cf. also A000594.
These are the primes in A028929.

Programs

  • Mathematica
    Union[QuadPrimes2[2, 1, 3, 10000], QuadPrimes2[2, -1, 3, 10000]] (* see A106856 *)
  • PARI
    forprime(p=2,10^4,if(0==#polrootsmod(x^3-x-1,p),print1(p,", "))); /* Joerg Arndt, Jul 27 2011 */
    
  • PARI
    forprime(p=2,10^4,if(polisirreducible(Mod(1, p)*(x^3-x-1)), print1(p, ", ") ) ); /* Joerg Arndt, Mar 30 2013 */
    
  • Python
    from itertools import count, islice
    from sympy import prime, GF, Poly
    from sympy.abc import x
    def A106867_gen(): # generator of terms
        return filter(lambda p:Poly(x**3-x-1,domain=GF(p)).is_irreducible, (prime(i) for i in count(1)))
    A106867_list = list(islice(A106867_gen(),20)) # Chai Wah Wu, Nov 11 2022

A086937 Number of distinct zeros of x^2-x-1 mod prime(n).

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 0, 2, 0, 2, 2, 0, 2, 0, 0, 0, 2, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 0, 2, 0, 0, 2, 0, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 2, 2, 0, 0, 2, 0, 2, 2, 2, 0, 0, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 2, 0, 0, 2, 0, 2, 0, 2, 2, 2, 2, 2, 0, 2, 0, 2, 0, 2, 0, 0, 2, 0, 2, 2, 0, 2, 2, 0, 2, 0, 0, 0, 2, 2
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2003

Keywords

Comments

For the prime modulus 5, the polynomial can be factored as (x+2)^2, showing that x=3 is a zero of multiplicity 2. The discriminant of the polynomial is 5. Also note how this sequence is related to the Fibonacci sequence A051830; for n>3, a(n) = 2*A051830(n). - T. D. Noe, Aug 13 2004

Crossrefs

Programs

  • Mathematica
    Table[p=Prime[n]; cnt=0; Do[If[Mod[x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 105}] (* T. D. Noe, Sep 24 2003 *)

Formula

If p = prime(n), a(n) = A080891(p) + 1.

Extensions

Corrected and extended by T. D. Noe, Sep 24 2003

A086966 Number of distinct zeros of x^4-x-1 mod prime(n).

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 0, 1, 1, 0, 2, 1, 0, 0, 2, 1, 1, 2, 0, 0, 2, 4, 1, 1, 0, 1, 2, 0, 0, 0, 2, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 2, 2, 2, 1, 1, 0, 0, 2, 1, 2, 2, 1, 1, 1, 1, 1, 0, 0, 3, 1, 1, 0, 0, 1, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 0, 2, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 2, 2, 1, 1, 0
Offset: 1

Views

Author

N. J. A. Sloane, Sep 24 2003

Keywords

Comments

For the prime modulus 283, the polynomial can be factored as (x+18) (x+168) (x+190)^2, showing that x=93 is a zero of multiplicity 2. The discriminant of the polynomial is 283. - T. D. Noe, Aug 12 2004

Crossrefs

Programs

  • Maple
    f:= n -> nops([msolve(x^4-x-1,ithprime(n))]):
    map(f, [$1..100]); # Robert Israel, Aug 10 2023
  • Mathematica
    Table[p=Prime[n]; cnt=0; Do[If[Mod[x^4-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 105}] (* T. D. Noe, Sep 24 2003 *)

Extensions

More terms from T. D. Noe, Sep 24 2003

A086967 Number of distinct zeros of x^5-x-1 mod prime(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 1, 0, 2, 2, 2, 2, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 2, 0, 2, 1, 1, 0, 0, 0, 2, 1, 3, 0, 1, 2, 2, 2, 3, 0, 0, 0, 1, 3, 2, 0, 1, 1, 1, 0, 1, 1, 0, 0, 2, 0, 2, 3, 2, 1, 2, 1, 0, 2, 2, 0, 1, 0, 2, 0, 0, 1, 0, 0, 2, 0, 1, 0, 1, 1, 1, 0, 2, 0, 2, 3, 1, 3, 1, 3, 0, 0, 1, 0, 1
Offset: 1

Views

Author

N. J. A. Sloane, Sep 24 2003

Keywords

Comments

For the prime modulus 19, the polynomial can be factored as (x+6)^2 (x^3+7x^2+13x+10), showing that x=13 is a zero of multiplicity 2. For the prime modulus 151, the polynomial can be factored as (x+9) (x+39)^2 (x^2+64x+61), showing that x=112 is a zero of multiplicity 2. The discriminant of the polynomial is 2869=19*151. - T. D. Noe, Aug 12 2004

Crossrefs

Programs

  • Mathematica
    Table[p=Prime[n]; cnt=0; Do[If[Mod[x^5-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 100}] (from T. D. Noe)

Extensions

More terms from T. D. Noe, Sep 24 2003
Showing 1-4 of 4 results.