A086970 Fix 1, then exchange the subsequent odd numbers in pairs.
1, 5, 3, 9, 7, 13, 11, 17, 15, 21, 19, 25, 23, 29, 27, 33, 31, 37, 35, 41, 39, 45, 43, 49, 47, 53, 51, 57, 55, 61, 59, 65, 63, 69, 67, 73, 71, 77, 75, 81, 79, 85, 83, 89, 87, 93, 91, 97, 95, 101, 99, 105, 103, 109, 107, 113, 111, 117, 115, 121, 119
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Magma
[1] cat [2*n+1-2*(-1)^n: n in [1..70]]; // Vincenzo Librandi, Jun 21 2017
-
Mathematica
Join[{1}, LinearRecurrence[{1, 1, -1}, {5, 3, 9}, 60]] (* Vincenzo Librandi, Jun 21 2017 *)
-
PARI
Vec((1+4*x-3*x^2+2*x^3)/((1+x)*(1-x)^2) + O(x^100)) \\ Michel Marcus, Jun 21 2017
Formula
G.f.: (1+4*x-3*x^2+2*x^3)/((1+x)*(1-x)^2).
a(n) = n + abs(2 - (n + 1)*(-1)^n). - Lechoslaw Ratajczak, Dec 09 2016
From Guenther Schrack, Jun 09 2017: (Start)
a(n) = 2*n + 1 - 2*(-1)^n for n > 0.
a(n) = 2*n + 1 - 2*cos(n*Pi) for n > 0.
a(n) = 4*n - a(n-1) for n > 1.
Linear recurrence: a(n) = a(n-1) + a(n-2) - a(n-3) for n > 3.
First differences: 2 - 4*(-1)^n for n > 1; -(-1)^n*A010696(n) for n > 1.
a(n) = A065164(n+1) + n for n > 0.
a(2*n-1) = A004766(n) for n > 0.
a(2*n+2) = A004767(n) for n >= 0. (End)
Comments